Journal article

Institut für Strahlenwerkzeuge (IFWS)

Here you will find all journal articles where IFSW employees were authors.

Journal article

  1. 2024

    1. D. Holder et al., “Enhancing heat transfer at low temperatures by laser functionalization of the inner surface of metal pipes,” Scientific Reports, vol. 14, no. 2557, Art. no. 2557, 2024, doi: https://doi.org/10.1038/s41598-024-53062-8.
    2. J.-H. Wolter, A. Voss, T. Graf, and M. Abdou Ahmed, “Design of convex-shaped transparent heat spreaders for symmetrical cooling of a thin-disk laser crystal by mechanical pressing,” Applied Physics B, vol. 130, no. 1, Art. no. 1, Jan. 2024, doi: 10.1007/s00340-023-08155-z.
    3. M. Zeyen et al., “Compact 20-pass thin-disk multipass amplifier stable against thermal lensing effects and delivering 330 mJ pulses with M2 < 1.17,” Optics Express, vol. 32, no. 2, Art. no. 2, Jan. 2024, doi: 10.1364/oe.506962.
  2. 2023

    1. D. Bashir et al., “Sapphire-based resonant waveguide-grating mirrors: advancing their intra-cavity power density capability,” Applied Physics B, vol. 130, no. 1, Art. no. 1, Dec. 2023, doi: 10.1007/s00340-023-08144-2.
    2. F. Bienert, T. Graf, and M. A. Ahmed, “General mathematical model for the period chirp in interference lithography,” Opt. Express, vol. 31, no. 4, Art. no. 4, Feb. 2023, doi: 10.1364/OE.481887.
    3. F. Bienert, C. Röcker, T. Dietrich, T. Graf, and M. Abdou Ahmed, “Detrimental effects of period-chirped gratings in pulse compressors,” Opt. Express, vol. 31, no. 24, Art. no. 24, Nov. 2023, doi: 10.1364/OE.505875.
    4. F. Bienert, C. Röcker, T. Graf, and M. A. Ahmed, “Simple spatially resolved period measurement of chirped pulse compression gratings,” Opt. Express, vol. 31, no. 12, Art. no. 12, Jun. 2023, doi: 10.1364/OE.489238.
    5. D. Brinkmeier, V. Onuseit, and T. Graf, “Feasibility assessment of parallelized helical drilling,” Optical Engineering, vol. 62, no. 03, Art. no. 03, 2023, doi: 10.1117/1.OE.62.3.035106.
    6. D. Didychenko et al., “Generation of a radially polarized beam in a polycrystalline ceramic Yb:Lu2O3 thin-disk laser,” Applied Physics B, vol. 129, no. 9, Art. no. 9, Aug. 2023, doi: 10.1007/s00340-023-08089-6.
    7. S. Esser, X. Xu, J. Wang, J. Zhang, T. Graf, and M. Abdou Ahmed, “Single-crystal and ceramic Yb:Lu2O3 gain media for thin-disk oscillators,” Applied Physics B, vol. 129, no. 10, Art. no. 10, Sep. 2023, doi: 10.1007/s00340-023-08103-x.
    8. F. Hermann, A. Michalowski, T. Brünnette, P. Reimann, S. Vogt, and T. Graf, “Data-Driven Prediction and Uncertainty Quantification of Process Parameters for Directed Energy Deposition,” Materials, vol. 16, no. 23, Art. no. 23, 2023, doi: 10.3390/ma16237308.
    9. M. Hossfeld, “On Friction, Heat Input, and Material Flow Initiation during Friction Stir Welding: Tool and Process Optimization,” Journal of Manufacturing and Materials Processing, vol. 7, no. 1, Art. no. 1, 2023, doi: 10.3390/jmmp7010034.
    10. M. Hummel et al., “Analysis on the influence of vapor capillary aspect ratio on pore formation in laser beam welding of aluminum,” Journal of Materials Processing Technology, vol. 312, p. 117862, Mar. 2023, doi: 10.1016/j.jmatprotec.2023.117862.
    11. J. Lind, C. Hagenlocher, N. Weckenmann, D. Blazquez-Sanchez, R. Weber, and T. Graf, “Adjustment of the geometries of the cutting front and the kerf by means of beam shaping to maximize the speed of laser cutting,” The International Journal of Advanced Manufacturing Technology, 2023, doi: https://doi.org/10.1007/s00170-023-11215-5.
    12. A. Loescher, C. Röcker, F. Bienert, T. Graf, and M. Abdou Ahmed, “Frequency-Doubled High-Power Optical Vortex Beam With Sub 500 fs Pulse Duration,” Journal of Lightwave Technology, vol. 41, no. 7, Art. no. 7, Apr. 2023, doi: 10.1109/JLT.2022.3225903.
    13. G. Mourkioti et al., “Sc2O3 on sapphire all-crystalline grating--waveguide resonant reflectors,” Applied Physics B, vol. 129, no. 5, Art. no. 5, Apr. 2023, doi: 10.1007/s00340-023-08009-8.
    14. J. Nuber et al., “Diffusion of muonic hydrogen in hydrogen gas and the measurement of the 1s hyperfine splitting of muonic hydrogen,” SciPost Physics Core, vol. 6, no. 3, Art. no. 3, Aug. 2023, doi: 10.21468/scipostphyscore.6.3.057.
    15. R. R. N. Rao et al., “Quantitative investigation on a period variation reduction method for the fabrication of large-area gratings using two-spherical-beam laser interference lithography,” Opt. Express, vol. 31, no. 1, Art. no. 1, Jan. 2023, doi: 10.1364/OE.478688.
    16. M. Zeyen et al., “Injection-seeded high-power Yb:YAG thin-disk laser stabilized by the Pound-Drever-Hall method,” Optics Express, vol. 31, no. 18, Art. no. 18, Aug. 2023, doi: 10.1364/oe.498023.
    17. M. Zeyen et al., “Pound–Drever–Hall locking scheme free from Trojan operating points,” Review of Scientific Instruments, vol. 94, no. 1, Art. no. 1, Jan. 2023, doi: 10.1063/5.0130508.
    18. M. Zeyen et al., “Pound–Drever–Hall locking scheme free from Trojan operating points,” Review of Scientific Instruments, vol. 94, no. 1, Art. no. 1, 2023, doi: 10.1063/5.0130508.
  3. 2022

    1. M. Abdou Ahmed et al., “High-power thin-disk lasers emitting beams with axially-symmetric polarizations,” Nanophotonics, vol. 11, no. 4, Art. no. 4, 2022, doi: https://doi.org/10.1515/nanoph-2021-0606.
    2. P. Amaro et al., “Laser excitation of the 1s-hyperfine transition in muonic hydrogen,” SciPost Physics, vol. 13, no. 2, Art. no. 2, Aug. 2022, doi: 10.21468/scipostphys.13.2.020.
    3. F. Bienert, T. Graf, and M. Abdou Ahmed, “Comprehensive theoretical analysis of the period chirp in laser interference lithography,” Appl. Opt., vol. 61, no. 9, Art. no. 9, Mar. 2022, doi: 10.1364/AO.451873.
    4. F. Bienert, T. Graf, and M. Abdou Ahmed, “Theoretical investigation on the elimination of the period chirp by deliberate substrate deformations,” Optics Express, vol. 30, no. 13, Art. no. 13, Jun. 2022, doi: 10.1364/oe.458636.
    5. F. Bienert, A. Loescher, C. Röcker, T. Graf, and M. A. Ahmed, “Experimental analysis on CPA-free thin-disk multipass amplifiers operated in a helium-rich atmosphere,” Opt. Express, vol. 30, no. 21, Art. no. 21, Oct. 2022, doi: 10.1364/OE.469697.
    6. A. Boubekraoui, F. Beirow, T. Graf, and M. Abdou Ahmed, “Intra-cavity wavelength multiplexing of high-brightness thin-disk laser beams,” Applied Physics B, vol. 128, no. 7, Art. no. 7, 2022, doi: 10.1007/s00340-022-07836-5.
    7. U. Brauch, C. Röcker, T. Graf, and M. Abdou Ahmed, “High-power, high-brightness solid-state laser architectures and their characteristics,” Applied Physics B, vol. 128, no. 3, Art. no. 3, 2022, doi: 10.1007/s00340-021-07736-0.
    8. D. Brinkmeier et al., “Process limits for percussion drilling of stainless steel with ultrashort laser pulses at high average powers,” Applied Physics A, vol. 128, no. 35, Art. no. 35, 2022, doi: https://doi.org/10.1007/s00339-021-05156-7.
    9. M. Henn, M. Buser, V. Lubkowitz, D. Kolb, and M. Hofele, “Novel laser-based powder bed fusion processes for the production of next generation electrical drives,” LaserFocusWorld, Jun. 2022, [Online]. Available: https://digital.laserfocusworld.com/laserfocusworld/202206/MobilePagedReplica.action?pm=2&folio=C4#pg69
    10. F. Hermann et al., “A Digital Twin Approach for the Prediction of the Geometry of Single Tracks Produced by Laser Metal Deposition,” Procedia CIRP, vol. 107, pp. 83--88, 2022, doi: 10.1016/j.procir.2022.04.014.
    11. D. Holder, S. Hensel, A. Peter, R. Weber, and T. Graf, “Beam Shaping for Uniform and Energy-efficient Surface Structuring of Metals with Ultrashort Laser Pulses in the mJ Range,” JLMN-Journal of Laser Micro/Nanoengineering, vol. 17, no. 1, Art. no. 1, 2022, doi: DOI:10.2961/jlmn.2022.01.2006.
    12. J. Holland, W. Rudolf, S. Marc, and T. Graf, “Influence of Pulse Duration on X-ray Emission during Industrial Ultrafast Laser Processing,” Materials, vol. 15, no. 6, Art. no. 6, 2022, doi: 10.3390/ma15062257.
    13. J. Holland, R. Weber, M. Sailer, C. Hagenlocher, and T. Graf, “Pulse duration dependency of the X-ray emission during materials processing with ultrashort laser pulses,” Procedia CIRP, vol. 111, pp. 855–858, 2022, doi: https://doi.org/10.1016/j.procir.2022.08.097.
    14. M. Hossfeld, “Modeling Friction Stir Welding: On Prediction and Numerical Tool Development,” Metals, vol. 12, no. 9, Art. no. 9, 2022, doi: 10.3390/met12091432.
    15. M. Hossfeld, “Shoulderless Friction Stir Welding: a low-force solid state keyhole joining technique for deep welding of labile structures,” Production Engineering, vol. 16, no. 2, Art. no. 2, Apr. 2022, doi: 10.1007/s11740-021-01083-x.
    16. M. Jarwitz, “Towards a universal laser machine for batch-size 1 production,” Laser Systems Europe, vol. Autumn 2022, Aug. 2022, [Online]. Available: https://www.lasersystemseurope.com/analysis-opinion/towards-universal-laser-machine-batch-size-1-production
    17. M. Jarwitz, D. Traunecker, C. von Arnim, N. Müller, and S. Kramer, “Towards a universal manufacturing node: Requirements for a versatile, laser-based machine tool for highly adaptable manufacturing,” Procedia CIRP, vol. 111, pp. 816--821, 2022, doi: 10.1016/j.procir.2022.08.090.
    18. M. A. Küper et al., “Robotic-assisted plate osteosynthesis of the anterior pelvic ring and acetabulum: an anatomical feasibility study,” Journal of Robotic Surgery, vol. 16, no. 6, Art. no. 6, Dec. 2022, doi: 10.1007/s11701-022-01381-1.
    19. M. A. Küper et al., “Robotic‑assisted plate osteosynthesis of the anterior pelvic ring and acetabulum: an anatomical feasibility study,” Journal of Robotic Surgery, 2022, doi: 10.1007/s11701-022-01381-1.
    20. A. Leis, D. Traunecker, R. Weber, and T. Graf, “Tuning the Hardness of Produced Parts by Adjusting the Cooling Rate during Laser-Based Powder Bed Fusion of AlSi10Mg by Adapting the Process Parameters,” Metals, vol. 12, no. 12, Art. no. 12, 2022, doi: 10.3390/met12122000.
    21. J. Lind et al., “Influence of the laser cutting front geometry on the striation formation analysed with high-speed synchrotron X-ray imaging,” IOP Conference Series: Materials Science and Engineering, vol. 1135, no. 1, Art. no. 1, 2022, doi: 10.1088/1757-899X/1135/1/012009.
    22. A. Loescher et al., “Thin-disk multipass amplifier delivering sub-400 fs pulses with excellent beam quality at an average power of 1 kW,” Optics Continuum, vol. 1, no. 4, Art. no. 4, Apr. 2022, doi: https://doi.org/10.1364/OPTCON.451490.
    23. S. Olschok et al., “Laser beam quality welds – Learning from other processes,” Procedia CIRP, vol. 111, pp. 401--404, 2022, doi: 10.1016/j.procir.2022.08.175.
    24. P. L. Rall, D. Förster, T. Graf, and C. Pflaum, “Simulation and compensation of thermal lensing in optical systems,” Optics Express, vol. 30, no. 21, Art. no. 21, Oct. 2022, doi: 10.1364/oe.467813.
    25. E. N. Reinheimer, R. Weber, and T. Graf, “Process limit imposed by the occurrence of undercuts during high-speed laser welding,” Journal of Laser Applications, vol. 34, no. 3, Art. no. 3, Aug. 2022, doi: 10.2351/7.0000621.
    26. U. Reisgen et al., “Zeitlich und örtlich geregelte Temperaturfelder bei der Werkstoffbearbeitung mit dem Elektronenstrahl und dem Laserstrahl,” Schweissen und Schneiden, vol. 1, pp. 24–31, 2022, [Online]. Available: https://www.schweissenundschneiden.de/ausgaben/ausgabe-1-2022
    27. C. Röcker et al., “Nonlinear absorption in lithium triborate frequency converters for high-power ultrafast lasers,” Optics Express, vol. 30, no. 4, Art. no. 4, Feb. 2022, doi: 10.1364/oe.447255.
    28. C. Röhrer, T. Kühlthau, B. Chen, G. Kleem, T. Graf, and M. Abdou Ahmed, “Design, production, and characterization of specialty optical fibers at the IFSW,” PhotonicsViews, vol. 19, no. 3, Art. no. 3, Jun. 2022, doi: 10.1002/phvs.202200023.
    29. D. Sollich, E.-N. Reinheimer, J. Wagner, P. Berger, and P. Eberhard, “An improved recoil pressure boundary condition for the simulation of deep penetration laser beam welding using the SPH method,” European Journal of Mechanics - B/Fluids, Jun. 2022, doi: 10.1016/j.euromechflu.2022.06.001.
    30. J. Wagner et al., “Influence of dynamic beam shaping on the geometry of the keyhole during laser beam welding,” Procedia CIRP, vol. 111, pp. 448--452, 2022, doi: 10.1016/j.procir.2022.08.185.
    31. P. J. Weinert et al., “High-power quasi-CW diode-pumped 750-nm AlGaAs VECSEL emitting a peak power of 29.6 W and an average power of 8.5 W,” Opt. Lett., vol. 47, no. 8, Art. no. 8, Apr. 2022, doi: 10.1364/OL.450697.
  4. 2021

    1. M. Abdou Ahmed et al., “High-power ultrafast thin-disk multipass amplifiers for efficient laser-based manufacturing,” Advanced Optical technolgies, vol. 10, no. 4–5, Art. no. 4–5, Oct. 2021, doi: https://doi.org/10.1515/aot-2021-0047.
    2. F. Abt, M. Eichenberger, and D. Förster, “Laser drilling of banknote substrates,” Results in Optics, vol. 3, p. 100058, May 2021, doi: 10.1016/j.rio.2021.100058.
    3. F. Beirow et al., “Increasing the efficiency of the intra-cavity generation of ultra-short radially polarized pulses in thin-disk resonators with grating waveguide structures,” OSA Contunuum, vol. 4, no. 2, Art. no. 2, Feb. 2021, doi: https://doi.org/10.1364/OSAC.414100.
    4. F. Beirow, K. Schmidt, O. Sawodny, T. Graf, and M. Abdou Ahmed, “Closed-loop controlled compensation of thermal lensing in high-power thin-disk lasers using spherically deformable mirrors,” Laser Physics Letters, vol. 18, no. 2, Art. no. 2, Jan. 2021, doi: https://doi.org/10.1088/1612-202X/abd3fa.
    5. F. Beirow et al., “Increasing the efficiency of the intra-cavity generation of ultra-short radially polarized pulses in thin-disk resonators with grating waveguide structures,” OSA Contunuum, vol. 4, no. 2, Art. no. 2, Feb. 2021, doi: https://doi.org/10.1364/OSAC.414100.
    6. M. Buser, V. Onuseit, and T. Graf, “Scan path strategy for laser processing of fragmented geometries,” Optics and Lasers in Engineering, vol. 138, 2021, doi: 10.1016/j.optlaseng.2020.106412.
    7. C. Böhm, C. Hagenlocher, J. Wagner, T. Graf, and S. Weihe, “Analytical Description of the Criterion for the Columnar-To-Equiaxed Transition During Laser Beam Welding of Aluminum Alloys,” Metallurgical and Materials Transactions A, vol. 52, no. 7, Art. no. 7, Jul. 2021, doi: 10.1007/s11661-021-06238-0.
    8. B. Dannecker, F. Beirow, B. Weichelt, D. Rytz, T. Graf, and M. Abdou Ahmed, “SESAM mode-locked Yb:YAB thin-disk oscillator delivering an average power of 19 W,” Optics Letters, vol. 46, no. 4, Art. no. 4, Feb. 2021, doi: https://doi.org/10.1364/OL.414260.
    9. S. Esser et al., “Ceramic Yb:Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation,” Optics Letters, vol. 46, no. 24/15, Art. no. 24/15, 2021, doi: 10.1364/OL.445637.
    10. F. Fetzer, C. Hagenlocher, R. Weber, and T. Graf, “Geometry and stability of the capillary during deep-penetration laser welding of AlMgSi at high feed rates,” Optics & Laser Technology, vol. 133, p. 106562, 2021, doi: https://doi.org/10.1016/j.optlastec.2020.106562.
    11. A. Feuer, R. Weber, R. Feuer, D. Brinkmeier, and T. Graf, “High‑quality percussion drilling with ultrashort laser pulses,” Appl Phys A (Applied Physics A), vol. 127:665, no. 9, Art. no. 9, Sep. 2021, doi: https://doi.org/10.1007/s00339-021-04818-w.
    12. S. Hecker, M. Scharun, and T. Graf, “Process monitoring based on plasma emission for power-modulated glass welding with bursts of subpicosecond laser pulses,” Applied Optics, vol. 60, no. 12, Art. no. 12, Apr. 2021, doi: https://doi.org/10.1364/AO.420037.
    13. M. Henn, M. Buser, and V. Onuseit, “Taking powder bed fusion precision to the next level with in-situ laser ablation,” Laser Systems Europe, vol. Autumn 2021, Oct. 2021, [Online]. Available: https://www.lasersystemseurope.com/analysis-opinion/taking-powder-bed-fusion-precision-next-level-situ-laser-ablation
    14. M. Henn, M. Buser, and V. Onuseit, “Taking the precision of powder bed fusion to the next level - with in-situ laser ablation,” 2021, [Online]. Available: https://www.lasersystemseurope.com/analysis-opinion/taking-powder-bed-fusion-precision-next-level-situ-laser-ablation
    15. D. Holder, M. Buser, S. Boley, R. Weber, and T. Graf, “Image processing based detection of the fibre orientation during depth-controlled laser ablation of CFRP monitored by optical coherence tomography,” Materials & Design, vol. 203, p. 109567, May 2021, doi: 10.1016/j.matdes.2021.109567.
    16. D. Holder et al., “High-quality high-throughput silicon laser milling using a 1 kW sub-picosecond laser,” Opt. Lett., vol. 46, no. 2, Art. no. 2, Jan. 2021, doi: 10.1364/OL.411412.
    17. M. Hossfeld, C. Ackermann, and C. Griffy-Brown, “A Cyberphysical Vehicle Platform for the Mobility of the Future—Creating New Value Networks and Business Models,” IEEE Engineering Management Review, vol. 49, no. 4, Art. no. 4, 2021, doi: 10.1109/EMR.2021.3117149.
    18. J. J. Krauth et al., “Measuring the $\upalpha$-particle charge radius with muonic helium-4 ions,” Nature, vol. 589, no. 7843, Art. no. 7843, Jan. 2021, doi: 10.1038/s41586-021-03183-1.
    19. A. Leis, R. Weber, and T. Graf, “Process Window for Highly Efficient Laser-Based Powder Bed Fusion of AlSi10Mg with Reduced Pore Formation,” Materials, vol. 14, no. 18, Art. no. 18, Sep. 2021, doi: 10.3390/ma14185255.
    20. A. Loescher et al., “Efficient and high-throughput ablation of platinum using high-repetition rate radially and azimuthally polarized sub-picosecond laser pulses,” Opt. Express, vol. 29, no. 13, Art. no. 13, Jun. 2021, doi: 10.1364/OE.415855.
    21. A. Loescher, C. Röcker, T. Graf, and M. Abdou Ahmed, “Azimuthally polarized picosecond vector beam with 1.7 kW of average output power,” Opt. Lett., vol. 46, no. 14, Art. no. 14, Jul. 2021, doi: 10.1364/OL.431995.
    22. A. H. A. Lutey et al., “Insight into replication effectiveness of laser-textured micro and nanoscale morphology by injection molding,” Journal of Manufacturing Processes, vol. 65, pp. 445--454, May 2021, doi: 10.1016/j.jmapro.2021.03.046.
    23. G. Reichardt et al., “Friction and Wear Behavior of Deep Drawing Tools Using Volatile Lubricants Injected Through Laser-Drilled Micro-Holes,” JOM, vol. 74, no. 3, Art. no. 3, Dec. 2021, doi: https://doi.org/10.1007/s11837-021-05028-8.
    24. C. Reiff et al., “A Process-Planning Framework for Sustainable Manufacturing,” Energies, vol. 14, no. 18, Art. no. 18, Sep. 2021, doi: 10.3390/en14185811.
    25. C. Reiff et al., “A Process-Planning Framework for Sustainable Manufacturing,” Energies, vol. 14, no. 18, Art. no. 18, 2021, doi: 10.3390/en14185811.
    26. M. Sawannia, P. Berger, R. Weber, and T. Graf, “Determination of the geometry of laser-cutting fronts with high spatial and temporal resolution,” IOP Publishing, vol. 1135, no. 012013, Art. no. 012013, Dec. 2021, doi: 10.1088/1757-899X/1135/1/012013.
    27. A. Trulson, M. A. Küper, A. Leis, U. Stöckle, F. Stuby, and M. Hossfeld, “PEGASOS - A New Linking Mechanism for Modular Osteosynthesis Plates in Minimally Invasive Acetabular Surgery,” Journal of Medical Devices, Oct. 2021, doi: 10.1115/1.4052786.
    28. J. Wagner, P. Berger, P. He, F. Fetzer, R. Weber, and T. Graf, “Reduced finite-volume model for the fast numerical calculation of the fluid flow in the melt pool in laser beam welding,” IOP conference series: Materials Science and Engineering, vol. 1135, no. 1, Art. no. 1, 2021, doi: 10.1088/1757-899X/1135/1/012010.
    29. J. Wagner, C. Hagenlocher, M. Hummel, A. Olowinsky, R. Weber, and T. Graf, “Synchrotron X-ray Analysis of the Influence of the Magnesium Content on the Absorptance during Full-Penetration Laser Welding of Aluminum,” Metals, vol. 11, no. 5, Art. no. 5, May 2021, doi: 10.3390/met11050797.
    30. R. Weber and T. Graf, “The challenges of productive materials processing with ultrafast lasers,” Adv. Opt. Techn., vol. 10, no. 4–5, Art. no. 4–5, 2021, doi: doi.org/10.1515/aot-2021-0038.
  5. 2020

    1. C. Ackermann and M. Hossfeld, “Höhere Wesen befahlen: Negotiating Conveyor Belt and Idleness,” The International Journal of Critical Cultural Studies, vol. 18, no. 2, Art. no. 2, 2020, doi: 10.18848/2327-0055/cgp/v18i02/25-32.
    2. F. Beirow, M. Eckerle, T. Graf, and M. Abdou Ahmed, “Amplifcation of radially polarized ultra‑short pulsed radiation to average output powers exceeding 250 W in a compact single‑stage Yb:YAG single‑crystal fber amplifer,” Applied Physics B, vol. 126, no. 148, Art. no. 148, 2020, doi: https://doi.org/10.1007/s00340-020-07502-8.
    3. O. Bocksrocker, P. Berger, S. Kessler, T. Hesse, V. Rominger, and T. Graf, “Local Vaporization at the Cut Front at High Laser Cutting Speeds,” Lasers in Manufacturing and Materials Processing, vol. 7, no. 2, Art. no. 2, Jun. 2020, doi: 10.1007/s40516-020-00113-3.
    4. T. Dietrich, C. Röcker, T. Graf, and M. Abdou Ahmed, “Modelling of natural convection in thin-disk lasers,” Applied Physics B, vol. 126, no. 3, Art. no. 3, Mar. 2020, doi: 10.1007/s00340-020-7394-6.
    5. A. A. Foumani, D. J. Förster, H. Ghorbanfekr, R. Weber, T. Graf, and A. R. Niknam, “Atomistic simulation of ultra-short pulsed laser ablation of metals with single and double pulses: An investigation of the re-deposition phenomenon,” Applied Surface Science, vol. 537, p. 147775, Sep. 2020, doi: 10.1016/j.apsusc.2020.147775.
    6. D. Förster, S. Faas, R. Weber, and T. Graf, “Thrust enhancement and propellant conservation for laser propulsion using ultra-short double pulses,” Applied Surface Science, vol. 510, p. 145391, 2020, doi: https://doi.org/10.1016/j.apsusc.2020.145391.
    7. L. Gallais, M. Rumpel, M. Moeller, T. Dietrich, T. Graf, and M. Abdou Ahmed, “Investigation of laser damage of grating waveguide structures submitted to sub-picosecond pulses,” Applied Physics B, vol. 126, no. 4, Art. no. 4, Mar. 2020, doi: 10.1007/s00340-020-07419-2.
    8. C. Hagenlocher, J. Lind, R. Weber, and T. Graf, “High-Speed X-Ray Investigation of Pore Formation during Full Penetration Laser Beam Welding of AA6016 Aluminum Sheets Contaminated with Lubricants,” Applied Sciences, vol. 10, no. 6, Art. no. 6, 2020, doi: 10.3390/app10062077.
    9. C. Hagenlocher et al., “The influence of residual stresses on laser beam welding processes of aluminium sheets,” Procedia CIRP, vol. 94, pp. 713--717, 2020.
    10. S. Hecker, M. Blothe, and T. Graf, “Reproducible process regimes during glass welding by bursts ofsubpicosecond laser pulses,” Appl. Opt., vol. 59, no. 36, Art. no. 36, Dec. 2020, doi: 10.1364/AO.411667.
    11. S. Hecker, M. Blothe, D. Grossmann, and T. Graf, “Process regimes during welding of glass by femtosecond laser pulse bursts,” Appl. Opt., vol. 59, no. 22, Art. no. 22, Aug. 2020, doi: 10.1364/AO.392702.
    12. S. Hecker, R. Weber, and T. Graf, “Position sensing of ultrashort pulsed laser-welded seams in glass by optical coherence tomography,” Journal of Laser Applications, vol. 32, no. 2, Art. no. 2, 2020, doi: https://doi.org/10.2351/1.5133467.
    13. M. Henn, G. Reichardt, M. Liewald, R. Weber, and T. Graf, “Dry Metal Forming Using Volatile Lubricants Injected into the Forming Tool Through Flow-Optimized, Laser-Drilled Microholes,” JOM, vol. 72, no. 7, Art. no. 7, Jul. 2020, doi: 10.1007/s11837-020-04169-6.
    14. D. Holder, A. Leis, M. Buser, R. Weber, and T. Graf, “High-quality net shape geometries from additively manufactured parts using closed-loop controlled ablation with ultrashort laser pulses,” Advanced Optical Technologies, vol. 9, pp. 101–110, Mar. 2020, doi: https://doi.org/10.1515/aot-2019-0065.
    15. J. Lind, F. Fetzer, D. Blazquez-Sanchez, J. Weidensdörfer, R. Weber, and T. Graf, “Geometry and absorptance of the cutting fronts during laser beam cutting,” Journal of Laser Applications, vol. 32, no. 3, Art. no. 3, Jun. 2020, doi: 10.2351/7.0000024.
    16. L. Meng, J. Ji, C. Röhrer, G. Kleem, T. Graf, and M. A. Ahmed, “Analysis of material concentration in step-index fibers with alumina cores produced by means of the powder-in-tube technique,” Opt. Express, vol. 28, no. 19, Art. no. 19, Sep. 2020, doi: 10.1364/OE.393198.
    17. Y. Qin et al., “Numerical analysis and semi-analytical prediction of the depth of holes drilled with combined ms and ns laser pulses,” Journal of Applied Physics, vol. 127, no. 21, Art. no. 21, Jun. 2020, doi: 10.1063/5.0005023.
    18. G. Reichardt et al., “Tribological system for cold sheet metal forming based on volatile lubricants and laser structured surfaces,” Dry Metal Forming Open Access Journal, vol. 6, 2020, [Online]. Available: https://www.trockenumformen.de/app/download/10606346/DMFOAJ_6_2020_128-165_Reichardt.pdf
    19. E. N. Reinheimer, E. Wolf, R. Weber, and T. Graf, “Influence of the duration of elevated temperatures caused by laser micro welding on the thermal damage in printed circuit boards,” J. Laser Appl. 32 (2), 022074 (2020), vol. 32, no. 022074, Art. no. 022074, May 2020, doi: 10.2351/1.5135655.
    20. C. Röcker et al., “Ultrafast green thin-disk laser exceeding 1.4  kW of average power,” Opt. Lett., vol. 45, no. 19, Art. no. 19, Oct. 2020, doi: 10.1364/OL.403781.
    21. C. Röcker et al., “Direct amplification of sub-300 fs pulses in a versatile thin-disk multipass amplifier,” Optics Communications, vol. 460, p. 125159, 2020, doi: https://doi.org/10.1016/j.optcom.2019.125159.
    22. K. Schmidt, F. Beirow, M. Böhm, T. Graf, M. Abdou Ahmed, and O. Sawodny, “Towards adaptive high-power lasers: Model-based control and disturbance compensation using moving horizon estimators,” Mechatronics, vol. 71, 2020, doi: https://doi.org/10.1016/j.mechatronics.2020.102441.
    23. J. Wagner et al., “Numerical analysis of the effect of residual stresses in formed aluminum sheet metal parts on the hot crack formation during laser beam welding,” Procedia CIRP, vol. 94, pp. 708--712, 2020.
    24. J.-H. Wolter et al., “Ti:sapphire thin-disk laser symmetrically cooled by curved single crystal diamond heat spreaders,” Laser Phsysics Letters, vol. 17, no. 1, Art. no. 1, 2020, doi: https://doi.org/10.1088/1612-202X/ab60af.
  6. 2019

    1. C. Ackermann, J. Kleinen, and M. Hossfeld, “Playing on the Ludic Drive - The Potentials of Meaningful Gamification,” The Journal of Communication and Media Studies, vol. 4, no. 2, Art. no. 2, 2019, doi: 10.18848/2470-9247/cgp/v04i02/35-43.
    2. C. Bechler, “Steigerung der Produktvität des selektiven Lasersinterns vom Kunststoff PA12 mittels Strahlumformung,” no. IFSW18-41, Art. no. IFSW18-41, Apr. 2019.
    3. O. Bocksrocker, P. Berger, F. Fetzer, V. Rominger, and T. Graf, “Influence of the Real Geometry of the Laser Cut Front on the Absorbed Intensity and the Gas Flow,” Lasers in Manufacturing and Materials Processing, vol. 6, no. 1, Art. no. 1, Mar. 2019, doi: https://doi.org/10.1007/s40516-018-0077-z.
    4. M. Boley, F. Fetzer, R. Weber, and T. Graf, “Statistical evaluation method to determine the laser welding depth by optical coherence tomography,” Optics and Lasers in Engineering, vol. 119, pp. 56--64, 2019.
    5. M. Boley, F. Fetzer, R. Weber, and T. Graf, “High-speed x-ray imaging system for the investigation of laser welding processes,” Journal of Laser Applications, vol. 31, no. 4, Art. no. 4, 2019, doi: https://doi.org/10.2351/1.5110595.
    6. N. Bär, “Entwicklung und Konstruktion eines automatisierten Pulverbetts für das selektive Lasersintern mit Polymer und Aluminium,” no. IFSW18-46, Art. no. IFSW18-46, 2019.
    7. B. Chen, “Investigation of leakage channel fibers for the delivery of high brightness laser beams,” no. IFSW19-24, Art. no. IFSW19-24, 2019.
    8. S. Faas, U. Bielke, R. Weber, and T. Graf, “Scaling the productivity of laser structuring processes using picosecond laser pulses at average powers of up to 420 W to produce superhydrophobic surfaces on stainless steel AISI 316L,” Scientific Reports, vol. 9, no. 1, Art. no. 1, 2019, doi: 10.1038/s41598-018-37867-y.
    9. A. Feuer, J.-U. Thomas, C. Freitag, R. Weber, and T. Graf, “Single-pass laser separation of 8 mm thick glass with a millijoule picosecond pulsed Gaussian–Bessel beam,” Journal of Applied Physics, vol. 125, no. 5, Art. no. 5, Apr. 2019, doi: https://doi.org/10.1007/s00339-019-2624-7.
    10. T. Graf, M. Abdou Ahmed, P. Berger, V. Onuseit, and R. Weber, “The Laser: one universal tool for manufacturing,” Industrial Laser Solutions, vol. 34, no. 1, Art. no. 1, Jan. 2019, [Online]. Available: https://www.industrial-lasers.com/cutting/article/16484556/the-laser-one-universal-tool-for-manufacturing
    11. C. Hagenlocher, F. Fetzer, D. Weller, R. Weber, and T. Graf, “Explicit analytical expressions for the influence of welding parameters on the grain structure of laser beam welds in aluminium alloys,” Materials & Design, vol. 174, p. 107791, 2019.
    12. C. Hagenlocher, D. Weller, R. Weber, and T. Graf, “Analytical Description of the Influence of the Welding Parameters on the Hot Cracking Susceptibility of Laser Beam Welds in Aluminum Alloys,” Metallurgical and Materials Transactions A, Aug. 2019, doi: 10.1007/s11661-019-05430-7.
    13. M. Hardt, M. Hoßfeld, C. Ackermann, and K.-H. Füller, “Open Vehicle Platform  for Updateable  and Upgradable Cars,” ATZproduction worldwide, vol. 6, no. 4, Art. no. 4, Nov. 2019, doi: 10.1007/s38312-019-0048-1.
    14. M. Hardt, M. Hoßfeld, C. Ackermann, and K.-H. Füller, “Offene Fahrzeugplattform  für update- und  upgradefähige Fahrzeuge,” ATZproduktion, vol. 6, no. 4, Art. no. 4, Nov. 2019, doi: 10.1007/s35726-019-0048-5.
    15. M. Hossfeld, “Time-dependency of mechanical properties and component behavior after friction stir welding,” The International Journal of Advanced Manufacturing Technology, pp. 1–9, Jan. 2019, doi: 10.1007/s00170-019-03324-x.
    16. V. Rominger, P. Berger, and H. Hügel, “Effects of reduced ambient pressure on spattering during the laser beam welding of mild steel,” Journal of Laser Applications, vol. 31, no. 4, Art. no. 4, 2019, doi: 10.2351/1.5007186.
    17. C. Röcker et al., “Ultrafast thin-disk multipass laser amplifier scheme avoiding misalignment induced by natural convection of the ambient air,” Optical Engineering, vol. 58, no. 9, Art. no. 9, 2019, doi: 10.1117/1.OE.58.9.096102.
    18. C. Röhrer, C. A. Codemard, G. Kleem, T. Graf, and M. Abdou Ahmed, “Preserving Nearly Diffraction-Limited Beam Quality Over Several Hundred Meters of Transmission Through Highly Multimode Fibers,” Journal of Lightwave Technology, vol. 37, no. 17, Art. no. 17, Sep. 2019, doi: 10.1109/JLT.2019.2922776.
    19. C. Röhrer et al., “Phase Shift Induced Degradation of Polarization Caused by Bends in Inhibited-Coupling Guiding Hollow-Core Fibers,” IEEE Photonics Technology Letters, vol. 31, no. 16, Art. no. 16, Aug. 2019, doi: 10.1109/LPT.2019.2927046.
    20. R. Weber, R. Giedl-Wagner, D. J. Förster, A. Pauli, T. Graf, and J. E. Balmer, “Expected X-ray dose rates resulting from industrial ultrafast laser applications,” Applied Physics A, vol. 125, no. 9, Art. no. 9, Aug. 2019, doi: 10.1007/s00339-019-2885-1.
    21. D. Weller, C. Hagenlocher, R. Weber, and T. Graf, “Influence of the solidification path of AlMgSi aluminium alloys on the critical strain rate during remote laser beam welding,” Science and Technology of Welding and Joining, vol. 25, no. 2, Art. no. 2, 2019, doi: 10.1080/13621718.2019.1633753.
    22. J.-H. Wolter et al., “Ti:sapphire thin-disk laser symmetrically cooled by curved single crystal diamond heat spreaders,” Laser Physics Letters, vol. 17, no. 1, Art. no. 1, Dec. 2019, doi: https://doi.org/10.1088/1612-202X/ab60af.
  7. 2018

    1. F. Beirow, M. Eckerle, B. Dannecker, T. Dietrich, M. Abdou Ahmed, and T. Graf, “Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level,” Optics Express, vol. 26, no. 4, Art. no. 4, Feb. 2018, doi: https://doi.org/10.1364/OE.26.004401.
    2. B. Dannecker et al., “Exploiting nonlinear spectral broadening in a 400 W Yb:YAG thin-disk multipass amplifier to achieve 2 mJ pulses with sub-150 fs duration,” Optics Communications, vol. 429, pp. 180--188, Dec. 2018, doi: 10.1016/j.optcom.2018.08.022.
    3. B. Dannecker, M. Rumpel, T. Graf, and M. A. Ahmed, “Trimming method for a high-yield manufacturing of high-efficiency diffraction gratings,” Opt. Lett., vol. 43, no. 16, Art. no. 16, Aug. 2018, doi: 10.1364/OL.43.004017.
    4. T. Dietrich et al., “Thin-disk oscillator delivering radially polarized beams with up to 980 W of CW output power,” Optics Letters, vol. 43, no. 6, Art. no. 6, Mar. 2018.
    5. S. Faas, U. Bielke, R. Weber, and T. Graf, “Prediction of the surface structures resulting from heat accumulation during processing with picosecond laser pulses at the average power of 420 W,” Applied Physics A, vol. 124, no. 9, Art. no. 9, Aug. 2018, doi: 10.1007/s00339-018-2040-4.
    6. S. Faas, D. J. Foerster, R. Weber, and T. Graf, “Determination of the thermally induced focal shift of processing optics for ultrafast lasers with average powers of up to 525 W,” Opt. Express, vol. 26, no. 20, Art. no. 20, Oct. 2018, doi: 10.1364/OE.26.026020.
    7. F. Fetzer, H. Hu, P. Berger, R. Weber, P. Eberhard, and T. Graf, “Fundamental investigations on the spiking mechanism by means of laser beam welding of ice,” Journal of Laser Applications, vol. 30, no. 1, Art. no. 1, Feb. 2018, doi: https://doi.org/10.2351/1.4986641.
    8. D. J. Förster et al., “Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses,” Applied Surface Science, vol. 440, pp. 926–931, 2018, doi: https://doi.org/10.1016/j.apsusc.2018.01.297.
    9. R. Groß, “Untersuchung der Abtragmechnismen von polymerbeschichtetem Metall am Beispiel von isolierten Kupferleitern in Hochleistungsmotoren,” no. IFSW18-10, Art. no. IFSW18-10, Feb. 2018.
    10. C. Hagenlocher, F. Fetzer, R. Weber, and T. Graf, “Benefits of very high feed rates for laser beam welding of AlMgSi aluminum alloys,” Journal of Laser Applications, vol. 30, no. 1, Art. no. 1, Feb. 2018, doi: 10.2351/1.5003795.
    11. C. Hagenlocher, M. Seibold, R. Weber, and T. Graf, “Modulation of the local grain structure in laser beam welds to inhibit the propagation of centerline hot cracks,” Procedia CIRP, vol. 74, pp. 434--437, 2018, [Online]. Available: https://ac.els-cdn.com/S221282711830951X/1-s2.0-S221282711830951X-main.pdf?_tid=d30bf302-b257-48fd-a34d-8f4bdc4895eb&acdnat=1537165105_cc9bb1f24320c5c26760fdb10c263608
    12. C. Hagenlocher, M. Sommer, F. Fetzer, R. Weber, and T. Graf, “Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum,” Materials & Design, vol. 160, pp. 1178–1185, Nov. 2018, doi: 10.1016/j.matdes.2018.11.009.
    13. C. Hagenlocher, P. Stritt, R. Weber, and T. Graf, “Strain signatures associated to the formation of hot cracks during laser beam welding of aluminum alloys,” Optics and Lasers in Engineering, vol. 100, pp. 131--140, 2018.
    14. C. Hagenlocher, D. Weller, R. Weber, and T. Graf, “Reduction of the hot cracking susceptibility of laser beam welds in AlMgSi alloys by increasing the number of grain boundaries,” Science and Technology of Welding and Joining, vol. 0, no. 0, Art. no. 0, 2018, doi: 10.1080/13621718.2018.1534775.
    15. M. Jarwitz, F. Fetzer, R. Weber, and T. Graf, “Weld Seam Geometry and Electrical Resistance of Laser-Welded, Aluminum-Copper Dissimilar Joints Produced with Spatial Beam Oscillation,” Metals, vol. 8, no. 7, Art. no. 7, 2018, doi: 10.3390/met8070510.
    16. A. Kroschel, M. Andreas, and G. Thomas, “Model of the final borehole geometry for helical laser drilling,” Advanced Optical Technologies, vol. 7, no. 3, Art. no. 3, 2018, doi: https://doi.org/10.1515/aot-2018-0006.
    17. A. Kroschel, A. Michalowski, F. Bauer, and T. Graf, “Calculating the Borehole Geometry Produced by Helical Drilling with Ultrashort Laser Pulses,” JLMN-Journal of Laser Micro/Nanoengineering, vol. 13, no. 3, Art. no. 3, 2018.
    18. K. Schmidt, P. Wittmuess, S. Piehler, M. Abdou Ahmed, T. Graf, and O. Sawodny, “Modeling and simulating the thermoelastic deformation of mirrors using transient multilayer models,” Mechatronics, vol. 53, pp. 168–180, 2018, doi: https://doi.org/10.1016/j.mechatronics.2018.06.003.
    19. K. Schmidt, P. Wittmüß, S. Piehler, M. Abdou Ahmed, T. Graf, and O. Sawodny, “Modellierung optisch adressierter Spiegel für adaptive Hochleistungslaser,” at-Automatisierungstechnik, vol. 66, no. 7, Art. no. 7, 2018, doi: https://doi.org/10.1515/auto-2018-0013.
    20. S. Schmidt et al., “The next generation of laser spectroscopyexperiments using light muonic atoms,” Journal of Physics, vol. Conf. Series, no. 1138, Art. no. 1138, 2018, doi: doi:10.1088/1742-6596/1138/1/012010.
    21. D. Weller, C. Hagenlocher, T. Steeb, R. Weber, and T. Graf, “Self-restraint hot cracking test for aluminum alloys using digital image correlation,” Procedia CIRP, vol. 74, pp. 430--433, 2018, doi: 10.1016/j.procir.2018.08.165.
  8. 2017

    1. O. Bocksrocker, P. Berger, B. Regaard, V. Rominger, and T. Graf, “Characterization of the melt flow direction and cut front geometry in oxygen cutting with a solid state laser,” Journal of Laser Applications, vol. 29, no. 2, Art. no. 2, May 2017, doi: 10.2351/1.4983262.
    2. T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. Abdou-Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Optics Letters, vol. 42, no. 17, Art. no. 17, 2017, doi: https://doi.org/10.1364/OL.42.003263.
    3. T. Dietrich et al., “Highly-efficient continuous-wave intra-cavity frequency-doubled Yb:LuAG thin-disk laser with 1 kW of output power,” Optics Express, vol. 25, no. 5, Art. no. 5, 2017.
    4. T. Dietrich et al., “Highly-efficient continuous-wave intra-cavity frequency-doubled Yb: LuAG thin-disk laser with 1 kW of output power,” Optics Express, vol. 25, no. 5, Art. no. 5, 2017, doi: https://doi.org/10.1364/OE.25.004917.
    5. M. Diez, M. Ametowobla, and T. Graf, “Time-Resolved Reflectivity and Temperature Measurements During Laser Irradiation of Crystalline Silicon,” JLMN - Journal of Laser Micro/Nanoengineering, vol. 12, no. 3, Art. no. 3, 2017.
    6. M. Eckerle et al., “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Applied Physics B, vol. 123, no. 5, Art. no. 5, 2017.
    7. M. Eckerle et al., “High-power single-stage single-crystal Yb: YAG fiber amplifier for radially polarized ultrashort laser pulses,” Applied Physics B, vol. 123, no. 5, Art. no. 5, 2017.
    8. S. Faas, C. Freitag, S. Boley, P. Berger, R. Weber, and T. Graf, “Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam,” Applied Physics A, vol. 123, p. 156, 2017.
    9. F. Fetzer, P. Stritt, P. Berger, R. Weber, and T. Graf, “Fast numerical method to predict the depth of laser welding,” Journal of Laser Applications, vol. 29, no. 2, Art. no. 2, 2017.
    10. C. Freitag, M. Wiedenmann, R. Weber, and T. Graf, “Strategien zur schädigungsarmen Laserbearbeitung von CFK,” 25. Stuttgarter Kunststoffkolloquium, 2017.
    11. J. GUTEKUNST et al., “Fiber-integrated spectroscopy device for hot alkali vapor,” Applied Optics, vol. 56, no. 21, Art. no. 21, Jul. 2017, doi: https://doi.org/10.1364/AO.56.005898.
    12. K. Heller, S. Kessler, F. Dorsch, P. Berger, and T. Graf, “Analytical description of the surface temperature for the characterization of laser welding processes,” International Journal of Heat and Mass Transfer, vol. 106, pp. 958–969, 2017.
    13. M. Jarwitz, R. Weber, and T. Graf, “Analytical model for the extent of the heat-affected zone occurring during overlap laser welding of dissimilar materials,” Journal of Applied Physics, vol. 122, no. 13, Art. no. 13, 2017, doi: 10.1063/1.4999693.
    14. R.-A. Lorbeer et al., “Thrust Noise Minimization in Long-term Laser Ablation of Propellant Material in the Nanosecond and Picosecond Regime,” Optical Engineering, vol. 56, no. 1, Art. no. 1, Jan. 2017, doi: 10.1117/1.OE.56.1.011010.
    15. J.-P. Negel et al., “Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization,” Applied Physics B, vol. 123, no. 5, Art. no. 5, 2017.
    16. S. Piehler, T. Dietrich, P. Wittmmuess, O. Sawodny, M. Abdou Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Optics Express, vol. 25, no. 4, Art. no. 4, 2017.
    17. S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. Abdou Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express, vol. 25, no. 4, Art. no. 4, Feb. 2017, doi: 10.1364/OE.25.004254.
    18. C. Röhrer, G. Kleem, M. A. Ahmed, and T. Graf, “Analysis of fundamental-mode beam transport in highly multimode fibers,” Journal of Lightwave Technology, vol. 35, no. 17, Art. no. 17, Sep. 2017, doi: 10.1109/JLT.2017.2718182.
    19. M. Schaefer, S. Kessler, P. Scheible, and T. Graf, “Modulation of the laser power to prevent hot cracking during laser welding of tempered steel,” Journal of Laser Applications, vol. 29, no. 4, Art. no. 4, 2017, doi: doi.org/10.2351/1.4989766.
    20. M. Schäfer, S. Kessler, F. Fetzer, and T. Graf, “Influence of the focal position on the melt flow during laser welding of steel,” Journal of Laser Applications, vol. 29, no. 1, Art. no. 1, 2017.
    21. M. Sommer, J.-P. Weberpals, S. Müller, P. Berger, and T. Graf, “Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold,” Journal of Laser Applications, vol. 29, no. 1, Art. no. 1, 2017, doi: 10.2351/1.4963399.
    22. R. Weber, T. Graf, C. Freitag, A. Feuer, T. Kononenko, and V. Konov, “Processing constraints resulting from heat accumulation during pulsed and repetive laser materials processing,” Optics Express, vol. 25, no. 4, Art. no. 4, 2017.
    23. J.-H. Wolter, M. A. Ahmed, and T. Graf, “Thin-disk laser operation of Ti: sapphire,” Optics letters, vol. 42, no. 8, Art. no. 8, 2017, [Online]. Available: https://doi.org/10.1364/OL.42.001624
  9. 2016

    1. M. Eckerle et al., “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” OPTICS LETTERS, vol. 41, no. 7, Art. no. 7, Apr. 2016, doi: 10.1364/OL.41.001680.
    2. H. P. Kahle et al., “Semiconductor membrane external-cavity surface-emitting laser (MECSEL),” Optica, vol. 3, no. 12, Art. no. 12, 2016.
    3. S. Piehler, T. Dietrich, M. Rumpel, T. Graf, and M. A. Ahmed, “Highly efficient 400 W near-fundamental-mode green thin-disk laser,” OPTICS LETTERS, vol. 41, no. 1, Art. no. 1, Jan. 2016, doi: 10.1364/OL.41.000171.
    4. S. Scharring, R.-A. Lorbeer, S. Karg, L. Pastuschka, D. J. Förster, and H.-A. Eckel, “The MICROLAS concept: precise thrust generation in the micronewton range by laser ablation,” 2016.
    5. P. Wittmuess, S. Piehler, T. Dietrich, M. A. Ahmed, T. Graf, and O. Sawodny, “Numerical modeling of multimode laser resonators,” JOSA B, vol. 33, no. 11, Art. no. 11, 2016.
  10. 2015

    1. E. Caracciolo et al., “Single-grating-mirror intracavity stretcher design for chirped pulse regenerative amplification,” Optics Letters, vol. 40, no. 7, Art. no. 7, 2015.
    2. T. Dietrich, M. Rumpel, T. Graf, and M. A. Ahmed, “Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb:YAG thin-disk laser,” OPTICS EXPRESS, vol. 23, no. 20, Art. no. 20, Oct. 2015, doi: 10.1364/OE.23.026651.
    3. C. Freitag et al., “High-quality processing of CFRP with a 1.1-kW picosecond laser,” Applied Physics A, 2015.
    4. T. Graf, P. Berger, R. Weber, H. Hügel, A. Heider, and P. Stritt, “Analytical expressions for the threshold of deep-penetration laser welding,” Laser Physics Letters, vol. 12, no. 5, Art. no. 5, 2015.
    5. G. Granger, C. Röhrer, G. Kleem, M. Abdou Ahmed, and T. Graf, “Generation of Supercontinuum LP0n Modes in Highly Multimode Gradient-Index Fiber,” Advanced Solid State Lasers OSA Technical Digest (Optical Society of America, 2015)), paper ATu2A.36, vol. paper ATu2A.36, 2015.
    6. A. Loescher, J.-P. Negel, T. Graf, and M. Abdou Ahmed, “Radially polarized emission with 635  W of average power and 2.1  mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier,” Optics Letters, vol. 40, no. 24, Art. no. 24, 2015, doi: 10.1364/OL.40.005758.
    7. C. M. N. Mateo et al., “Enhanced efficiency of AlGaInP disk laser by in-well pumping,” Optics Express, vol. 23, no. 3, Art. no. 3, 2015.
    8. P. Mucha, P. Berger, R. Weber, N. Speker, B. Sommer, and T. Graf, “Calibrated heat flow model for the determination of different heat-affected zones in single-pass laser-cut CFRP using a cw CO2 laser,” Applied Physics A, vol. 118, no. 4, Art. no. 4, 2015.
  11. 2014

    1. A. Aubourg et al., “1617 nm emission control of an Er:YAG laser by a corrugated single-layer resonant grating mirror,” Optics Letters, vol. 39, no. 3, Art. no. 3, 2014.
    2. B. Dannecker et al., “Passively mode-locked Yb:CaF2 thin-disk laser,” Optics Express, vol. 22, no. 19, Art. no. 19, 2014.
    3. C. Freitag, R. Weber, and T. Graf, “Polarization dependence of laser interaction with carbon fibers and CFRP,” Optics Express, vol. 22, no. 2, Art. no. 2, 2014.
    4. A. Heider, T. Arnold, P. Stritt, R. Weber, and T. Graf, “HIGH-POWER LASER SOURCES ENABLE HIGH-QUALITY LASER WELDING OF COPPER,” ICALEO, 19.-23.10.2014, San Diego, USA, 2014.
    5. T. V. Kononenko et al., “Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses,” Journal of Applied Physics, vol. 115, no. 10, Art. no. 10, 2014.
    6. H. Nakao et al., “Yb3+-doped ceramic thin-disk lasers of Lu-based oxides,” Optical Materials Express, vol. 4, no. 2121, Art. no. 2121, 2014.
    7. J.-P. Negel, “Durchbruch mit UKP-Lasern am IFSW,” Laser Magazin, no. 2, Art. no. 2, 2014.
    8. J.-P. Negel et al., “Delivery of 800 W of nearly diffraction-limited laser power through a 100 m long multi-mode fiber,” Laser Physics Letters, 2014.
    9. M. Rumpel, M. Möller, C. Moormann, T. Graf, and M. Abdou Ahmed, “Broadband pulse compression gratings with measured 99.7% diffraction efficiency,” Optics Letters, vol. 39, no. 2, Art. no. 2, 2014.
    10. P. Stritt, C. Hagenlocher, C. Kizler, R. Weber, C. Rüttimann, and T. Graf, “Laser spot welding of copper-aluminum joints using a pulsed dual wavelength laser at 532 and 1064 nm,” Physics Procedia, vol. 56, no. 56, Art. no. 56, 2014.
    11. P. Stritt and D. Weller, “Temperature and Stress Behavior During Close-Edge Laser Welding,” Laser Technik Journal, vol. 11, no. 3, Art. no. 3, 2014.
    12. A. Voß et al., “Thin-disk laser operation of Pr3+,Mg2+:SrAl12O19,” Optics Letters, vol. 39, no. 5, Art. no. 5, 2014.
    13. R. Weber et al., “Heat accumulation during pulsed laser materials processing,” Optics Express, vol. 22, no. 9, Art. no. 9, 2014.
    14. D. Weller et al., “Effects of Joining Geometries on Cracking Susceptibility and Process Efficiency Using Multi-Alloy Aluminium,” ICALEO, 19.-23.10.2014, San Diego, USA, vol. ICALEO 2014, 2014.
    15. D. Weller et al., “Influence of a multi-alloy aluminum design on the process efficiency during laser welding,” 8th International Conference on Photonic Technologies LANE 2014, 2014.
    16. K. S. Wentsch, B. Weichelt, F. Druon, P. Georges, M. Abdou Ahmed, and T. Graf, “Yb:CaF2 thin-disk laser,” Optics Express, vol. 22, no. 2, Art. no. 2, 2014.
  12. 2013

    1. M. Jarwitz, V. Onuseit, R. Weber, and T. Graf, “Spectral analysis of laser processing of carbon fiber reinforced plastics,” Physics Procedia, vol. 41, pp. 489–494, 2013.
  13. 2012

    1. C. Freitag, V. Onuseit, R. Weber, and T. Graf, “High-speed observation of the heat flow in CFRP during laser processing,” Physics Procedia, vol. 39, pp. 171–178, 2012.
    2. Y. Qin, A. Michalowski, R. Weber, S. Yang, T. Graf, and X. Ni, “Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries -- the influence of diffraction and interference,” Opt. Express, vol. 20, no. 24, Art. no. 24, Nov. 2012, doi: 10.1364/OE.20.026606.
    3. R. Weber et al., “Short-pulse laser processing of CFRP,” Physics Procedia, vol. 39, p. 137, 2012.
  14. 2011

    1. V. Onuseit, M. Abdou Ahmed, R. Weber, and T. Graf, “Space-resolved Spectrometric Measurements of the Cutting Front,” Physics Procedia, 2011.
    2. R. Weber et al., “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia, 2011.
  15. 2009

    1. A. Antognini et al., “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE Journal of Quantum Electronics, vol. 45, p. 993, 2009.
    2. B. Shalaby et al., “Quasi Gaussian beam from a multicore fibre laser by phase locking of supermodes,” Applied Physics B, vol. 97, no. 3, Art. no. 3, 2009.
    3. S. M. Ulrich et al., “Control of single quantum dot emission characteristics and fine structure by lateral electric fields,” physica status solidi (b), vol. 246, no. 2, Art. no. 2, 2009.
    4. M. M. Vogel, M. Abdou Ahmed, A. Voß, and T. Graf, “Very-large-mode-area, single-mode multicore fiber,” Optics Letters, vol. 34, no. 18, Art. no. 18, 2009.
    5. X. Wang et al., “Laser drilling of stainless steel with nanosecond double-pulse,” Optics & Laser Technology, vol. 41, p. 148, 2009.
  16. 2008

    1. F. Abt and A. Heß, “Strahldiagnostik im Diagnostikzentrum der FGSW Fokussierung von Single-Mode Laserstrahlung im kW-Bereich,” Laser Magazin, vol. 29.04.2008, no. 02, Art. no. 02, 2008.
    2. F. Abt, A. Heß, and F. Dausinger, “Focusing High-Power, Single-Mode Laser Beams,” Photonics Spectra, vol. 42, no. Mai, Art. no. Mai, 2008.
    3. A. Blug, F. Abt, L. Nicolosi, M. Geese, and R. Tetzlaff, “CNN: Pixelparallele Bildverarbeitung ermöglicht Prozessregelung beim Laserschweißen,” Photonik, vol. 06/2008, no. 06, Art. no. 06, 2008.
    4. A. Heß and F. Abt, “Laserstrahltiefschweißen von Kupferwerkstoffen im Dauerstrichbetrieb,” Laser Magazin, no. 5, Art. no. 5, 2008.
    5. M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” JLMN - Journal of Laser Micro/Nanoengineering, vol. 3, no. 3, Art. no. 3, 2008.
    6. A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt Dynamics and Hole Formation during Drilling with Ultrashort Pulses,” Journal of Laser Micro/Nanoengineering, vol. 3, no. 3, Art. no. 3, 2008.
    7. A. Popp, M. Abdou Ahmed, D. Kauffmann, A. Voß, and T. Graf, “Cw-operation of an Ytterbium-doped 19-core fiber laser,” SPIE Phtonics 2008, vol. 6998, 2008.
    8. C. Thiel, “Multimodale Prozessüberwachung beim Laserstrahlschweißen mit Strahlquellen höchster Brillanz,” Laser Magazin, vol. 06/2008, no. 06, Art. no. 06, 2008.
  17. 2007

    1. M. Abdou Ahmed, J. Schulz, A. Voß, O. Parriaux, J. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intra-cavity resonant grating mirror,” Optics Letters, vol. 32, no. 13, Art. no. 13, 2007.
    2. M. Abdou Ahmed, A. Voß, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Optics Letters, vol. 32, no. 22, Art. no. 22, 2007.
    3. S.-S. Beyertt et al., “Efficient gallium-arsenide disk laser,” IEEE Journal of Quantum Electronics, vol. 43, p. 869, 2007.
    4. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 3, Art. no. 3, 2007.
    5. A. Kireev, T. Graf, and H. P. Weber, “Phase-Locking in Fibre Laser Arrays,” Laser Physics Letters, vol. 4, p. 50, 2007.
    6. M. Larionov, F. Butze, D. Nickel, and A. Giesen, “High-repetition-rate regenerative thin-disk amplifier with 116�J pulse energy and 250 fs pulse duration,” Optics Letters, vol. 32, no. 5, Art. no. 5, 2007.
    7. Nicola Schulz et al., “Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35 mu m,” Applied Physics Letters, vol. 91, no. 9, Art. no. 9, 2007, [Online]. Available: http://link.aip.org/link/?APL/91/091113/1
    8. F. Pigeon et al., “Microchip-laser polarization control by destructive-interference resonant-grating mirror,” Optics Express, vol. 15, no. 5, Art. no. 5, 2007.
    9. H. Ridderbusch and T. Graf, “Saturation of 1047 nm and 1064 nm absorption in Cr4+:YAG crystals,” IEEE Journal of Quantum Electronics, vol. 43, pp. 168–173, 2007.
    10. N. Schulz et al., “Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35 µm,” Applied Physics Letters, vol. 91, p. 091113, 2007.
    11. C. Stolzenburg, “Gepulster Scheibenlaser im grünen Spektralbereich - Eine maßgeschneiderte Lösung für die Flachbildschirm-Industrie,” Laser Magazin, no. 1, Art. no. 1, 2007.
    12. C. Stolzenburg, A. Giesen, F. Butze, P. Heist, and G. Hollemann, “Cavity-dumped intracavity-frequency-doubled Yb:YAG thin disk laser with 100 W average power,” Optics Letters, vol. 32/9, p. 1123, 2007.
    13. A. Voß, M. Abdou Ahmed, and T. Graf, “Extension of the Jones Matrix Formalism to Higher Order Transverse Modes,” Optics Letters, vol. 32, no. 2, Art. no. 2, 2007.
    14. J.-P. Weberpals, F. Dausinger, G. Göbel, and B. Brenner, “Role of strong focusability on the welding process,” Journal of Laser Applications, vol. 19, no. 4, Art. no. 4, 2007.
  18. 2006

    1. M. Abdou Ahmed and T. Graf, “Double-resonance grating mirror for polarization control in solid-state lasers,” Laser Physics Letters, vol. Vol. 3, no. 4, Art. no. 4, 2006.
    2. M. Abdou Ahmed, T. Moser, F. Pigeon, O. Parriaux, and T. Graf, “Intra-cavity polarizing element for Nd:YAG laser,” Laser Physics Letters, vol. 3, no. 3, Art. no. 3, 2006.
    3. P. Geiser, U. Willert, D. Walter, and W. Schade, “A subnanosecond pulsed laser source for mid-infrared LIDAR,” Applied Physics B: Lasers and Optics, vol. 83, no. 2, Art. no. 2, 2006.
    4. M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror,” Journal of Applied Physics B, vol. 83, pp. 43–50, 2006.
    5. X. Jin, P. Berger, and T. Graf, “Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding,” Journal of Physics D: Applied Physics, vol. 39, p. 4703, 2006.
    6. M. S. Roth, V. Romano, T. Feurer, and T. Graf, “Self-compensating amplifier design for cw and Q-switched high-power Nd:YAG lasers,” Optics Express, vol. 14, pp. 2191–2196, 2006.
    7. N. Schulz et al., “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photonics Technology Letters, vol. 18, no. 9, Art. no. 9, 2006.
    8. N. Schulz et al., “High power continuous wave operation of a GaSb-based VECSEL emitting near 2. 3 µm,” physica status solidi (c), vol. 3, p. 386, 2006.
    9. J.-P. Weberpals, “Schweißeigenschaften von Lasern guter Fokussierbarkeit,” Werkstoffe in der Fertigung, vol. 4, no. Juli, Art. no. Juli, 2006.
    10. J.-P. Weberpals, C. Deininger, and F. Dausinger, “Vorteile guter Fokussierbarkeit,” Laser Technik Journal, vol. 2, no. März, Art. no. März, 2006.
  19. 2005

    1. A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Applied Physics B, no. Nov 2005, Art. no. Nov 2005, 2005.
    2. P. Berger, F. Dausinger, A. Giesen, and T. Graf, “Research on lasers and laser applications,” Themenheft Forschung <<Photonics>>, Universität Stuttgart, ISSN 1861-0269, no. 2, Art. no. 2, 2005.
    3. A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Applied Physics B, vol. 80, p. 655, 2005.
    4. S.-S. Beyertt, U. Brauch, A. Giesen, E. Gerster, and M. Zorn, “Direct Pumping of Quantum Wells Improves Performance of Semiconductor Thin-Disk Lasers,” Photonics Spectra, vol. 39, no. 6, Art. no. 6, 2005.
    5. S.-S. Beyertt, E. Gerster, and M. Zorn, “Semiconductor Thin-Disk Lasers,” Photonics Spectra, no. Mai, Art. no. Mai, 2005.
    6. S.-S. Beyertt et al., “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE Journal of Quantum Electronics, vol. 41, no. 12, Art. no. 12, 2005.
    7. U. Brauch, “Halbleiter-Scheibenlaser,” LaserMagazin, no. 01, Art. no. 01, 2005.
    8. N. Destouches et al., “99% efficiency measured in the -1rst order of a resonant grating,” Optics Express, vol. 13, p. 3230, 2005.
    9. M. I. Engl et al., “185-mW CW Operation at 658 nm of a Vertical External Cavity Thin Disc Semiconductor Laser,” Photonics Technology Letters, 2005.
    10. A. Kireev and T. Graf, “Symmetric Vector Coupled-Mode Theory of Dielectric Waveguides,” Optics Communications, vol. 244, no. 1–6, Art. no. 1–6, 2005.
    11. R. Le Harzic et al., “Processing of metals by double pulses with short laser pulses,” Applied Physics A, vol. A 81, no. 6, Art. no. 6, 2005.
    12. T. Moser et al., “Polarization selective grating mirrors used in the generation of radial polarization,” Applied Physics B, vol. 80, no. 6, Art. no. 6, 2005.
    13. D. Nickel et al., “200 kHz electro-optic switch for ultrafast laser systems.,” Review of Scientific Instruments, vol. 76, 2005.
    14. M. Ostermeyer, P. Kappe, R. Menzel, S. Sommer, and F. Dausinger, “Laser drilling in thin materials with bursts of ns-pulses generated by stimulated Brillouin scattering (SBS),” Applied Physics A: Materials Science & Processing, vol. A 81, no. Nr. 5, Art. no. Nr. 5, 2005.
    15. K. Petermann et al., “Highly Yb-doped oxides for thin-disk lasers,” Journal of Crystal Growth, vol. 275, no. 1–2, Art. no. 1–2, 2005.
    16. J.-P. Weberpals, “Anwendungspotenzial stark fokussierender Laser,” Laser Magazin, no. 6, Art. no. 6, 2005.
    17. E. W. Wyss, T. Graf, and H. P. Weber, “Solid-State Lasers at the Stability Limit: Constant Beam Properties over Large Power Ranges,” IEEE Journal of Quantum Electronics, vol. 41, no. 5, Art. no. 5, 2005.
  20. 2004

    1. A. Letsch and A. Giesen, “Laser Beam Characterization of a Diode Stack,” Photonics Spectra, vol. 38, no. 4, Art. no. 4, 2004.
    2. N. N. Nedialkov et al., “Laser ablation of iron by ultrashort laser pulses,” Thin Solid Films, vol. 453–454, pp. 496–500, Apr. 2004, doi: 10.1016/j.tsf.2003.11.112.
    3. D. Nickel, “Ultrakurzpuls-Scheibenlaser für die hochpräzise Materialbearbeitung,” Laser Magazin, vol. 5, p. 24, 2004.
    4. D. Nickel, C. Stolzenburg, A. Giesen, and F. Butze, “Ultrafast thin-disk Yb:KY(WO4)2 regenerative amplifier with a 200-kHz repetition rate,” Optics Letters, vol. 29, no. 23, Art. no. 23, 2004.
    5. M. H. Niemz et al., “Tooth ablation using a CPA-free thin disk femtosecond laser system.,” Applied Physics, vol. 79, p. 269, 2004.
    6. F. Reinert, T. Graf, W. Lüthy, and H. P. Weber, “Optically Controlled Adaptive Mirror,” Laser Physics Letters, vol. 1, no. 11, Art. no. 11, 2004.
    7. S. B. Ubizskii et al., “Optical properties of epitaxial YAG:Yb films.,” Physica Status Solidi A-Applied Research, vol. 201, no. 7, Art. no. 7, 2004.
  21. 2003

    1. U. Brauch, “Book Review: Selected papers on tunable solid-state lasers.,” Optics and Laser Technology, vol. 35, no. 7, Art. no. 7, 2003.
    2. G. Hergenhan, B. Lücke, and U. Brauch, “Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements: concept and experimental verification,” Applied Optics, vol. 42, no. 9, Art. no. 9, 2003.
    3. L. P. Jones et al., “Towards advanced welding methods for the ITER vacuum vessel sectors,” Fusion Engineering and Design, vol. 69, pp. 215–220, 2003.
    4. R. Klieber, A. Michalowski, R. Neuhaus, and D. Suter, “Nuclear quadrupole resonance of an electronically excited statefrom high-resolution hole-burning spectroscopy,” Physical Review B, vol. 67, pp. 184103-1-184103–6, 2003.
    5. J. Müller-Borhanian, “Integration optischer Messmethoden zur Prozesskontrolle beim Laserstrahlschweißen.,” Laser Magazin, no. 1, Art. no. 1, 2003.
  22. 2002

    1. P. A. Atanasov et al., “Laser ablation of Ni by ultrashort pulses: molecular dynamics simulation,” Applied Surface Science, vol. 186, pp. 369–373, 2002, doi: 10.1016/S0169-4332(01)00683-3.
    2. F. Dausinger, W. Gref, and A. Ruß, “Festkörperlaser zum Schweißen: Präziser Strahl schafft neue Potenziale,” Laser Magazin, no. 4, Art. no. 4, 2002.
    3. A. Ruß, W. Gref, F. Dausinger, and H. Hügel, “The thin disk laser - a high precision welding tool,” The industrial laser user, vol. 29, p. 40, 2002.
    4. H. Sakamoto, K. Shibata, and F. Dausinger, “Effect of Alloy Elements on Weld Properties in CO2 Laser Welding of Aluminum Alloys,” Journal of Light Metal Welding and Construction, vol. 40, no. 11, Art. no. 11, 2002.
  23. 2001

    1. G. Ambrosy, P. Berger, H. Hügel, and D. Lindenau, “Magnetisch unterstütztes Laserstrahlschweißen,” LaserOpto, vol. 33, no. 6, Art. no. 6, 2001.
    2. F. Brunner et al., “Widely tunable pulse durations from a passively mode-locked thin disk Yb:YAG Laser,” Optics Letters, vol. 26, p. 379, 2001.
    3. K. Contag, B. Lücke, A. Giesen, and H. Hügel, “Scheibenlaser und phasengekoppelte Diodenlaser: Eine neue Generation von Lasern mit hoher Fokussierbarkeit für die Fertigungstechnik,” WT Werkstatttechnik, vol. 91, no. 3, Art. no. 3, 2001.
    4. K. Contag, B. Lücke, A. Giesen, and H. Hügel, “Eine neue Generation von Lasern höchster Fokussierbarkeit für die Fertigungstechnik: Scheibenlaser und phasengekoppelte Diodenlaser,” WT Werkstatttechnik, vol. 91, p. 142, 2001.
    5. T. Fuhrich, P. Berger, and H. Hügel, “Marangoni effect in laser deep penetration welding of steel,” Journal of Laser Applications, vol. 13, no. 5, Art. no. 5, Sep. 2001, doi: 10.2351/1.1404412.
    6. G. Hergenhan, M. Scholl, B. Lücke, and U. Brauch, “Kohärente Vertikalemitter-Arrays,” Laser Opto, vol. 33, p. 68, 2001.
    7. T. V. Kononenko, V. I. Konov, S. V. Garnov, S. M. Klimentov, and F. Dausinger, “Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation,” Laser Physics, vol. 11, no. 3, Art. no. 3, 2001.
    8. B. Lücke, G. Hergenhan, U. Brauch, and A. Giesen, “Phase Tuning of Injection Locked VCSELs,” IEEE Photonics Technology Letters, vol. 13, no. 2, Art. no. 2, 2001.
    9. R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, “Passive mode locking of thin-disk lasers: effects of spatial hole burning,” Applied Physics B, vol. 72, p. 267, 2001.
    10. A. Ruf, P. Berger, F. Dausinger, and H. Hügel, “Analytical investigations on geometrical influences on laser drilling,” Journal of Physics D: Applied Physics, vol. 34, p. 2918, 2001.
    11. A. Ruß, “Hochpräzises Strahlwerkzeug Scheibenlaser,” Laser Magazin, no. 6, Art. no. 6, 2001.
    12. R. Xiao, G. Ambrosy, T. Zuo, and H. Hügel, “New approach to improve the laser welding process of aluminum by using an external electrical current,” Journal of materials science letters, no. 20, Art. no. 20, 2001.
  24. 2000

    1. T. Abeln, J. Radtke, and F. Dausinger, “High Precision Drilling with Solid-State Lasers,” Lambda Physik Highlights, no. 57, Art. no. 57, 2000.
    2. S. Amarande, H. Giesen, and H. Hügel, “Propagation analysis of self-convergent beam width and charakterization of hard edge diffracted beams,” Applied Optics, vol. 39, p. 3914, 2000.
    3. P. A. Atanasov, S. E. Imamova, and T. Hügel H., Abeln, “Optical parameters of silicon carbide and silicon nitride ceramics in 0.2 - 1.3 mm spectral range,” Journal of Applied Physics, vol. 88, no. 8, Art. no. 8, 2000.
    4. J. Aus der Au et al., “16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Optics Letters, vol. 25, no. 11, Art. no. 11, 2000.
    5. M. Brandner, G. Seibold, C. Chang, F. Dausinger, and H. Hügel, “Soldering with solid state and diode lasers: Energy coupling, temperature rise, process window,” Journal of Laser Applications, vol. 12, no. 5, Art. no. 5, 2000.
    6. M. Kern, P. Berger, and H. Hügel, “Magneto-Fluid Dynamic Control of Seam Quality in CO2 Laser Beam Welding,” Welding Journal, Welding Research Supplement, vol. 79, no. 3, Art. no. 3, 2000.
    7. M. Kern, P. Berger, and H. Hügel, “Magnetofluiddynamische Beeinflussung der Schweißnahtqualität beim Laserstrahlschweißen mit CO2-Laser,” Schweissen & Schneiden, vol. 52, no. 3, Art. no. 3, 2000.
    8. M. Kern, P. Berger, and H. Hügel, “Using magnetofluiddynamic effects in order to influence the weld quality in the case of CO2 laser-beam welding,” Welding & cutting (Schweißen & Schneiden Translation), no. 3, Art. no. 3, 2000.
    9. R. Mästle, A. Giesen, and H. Hügel, “Genormte Messverfahren zur Laserstrahlcharakterisierung,” LaserOpto, vol. 3, no. 32, Art. no. 32, 2000.
    10. H.-J. Obramski, R. Mästle, A. Giesen, and H. Hügel, “Optische Mess- und Regelkomponenten für die hochdynamische Führung und Formung von CO2-Laserstrahlen,” LaserOpto, vol. 3, no. 32, Art. no. 32, 2000.
    11. R. Paschotta et al., “Diode-pumped passively mode-locked lasers with high average power,” Applied Physics B, vol. 70 Sup., p. 25, 2000.
    12. C. Schinzel, B. Hohenberger, F. Dausinger, and H. Hügel, “Laserstrahlschweißen von Aluminiumkarosserien - der Weg vom Labor zur Praxis,” WT Werkstatttechnik, vol. 90, no. 1/2, Art. no. 1/2, 2000.
    13. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 4, Art. no. 4, 2000.
  25. 1999

    1. T. Abeln, A. Raiber, F. Dausinger, and H. Hügel, “Laser - Micro - Caving (LMC) - a tool for high precision ablation of steel,” Manufacturing Systems, vol. 28, no. 1, Art. no. 1, 1999.
    2. B. Angstenberger and F. Dausinger, “Laser-Plasma-Beschichtung von Diamant,” Journal für Oberflächentechnik, vol. 39, no. 11, Art. no. 11, 1999.
    3. L. C. Bartelt-Berger et al., “Monomode-fasergekoppeltes Halbleitersystem für den Direkteinsatz,” LaserOpto, vol. 31, no. 1, Art. no. 1, 1999.
    4. M. Brandner, G. Seibold, M. Haag, F. Dausinger, and H. Hügel, “Effektive Umsetzung der spezifischen Strahleigenschaften von Hochleistungsdiodenlasern (HLDL) zur Materialbearbeitung,” LaserOpto, vol. 31, no. 1, Art. no. 1, 1999.
    5. D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hügel, “Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths,” Applied Physics, no. A 69 Suppl, Art. no. A 69 Suppl, 1999.
    6. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hügel, “Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser,” Quantum Electronics, vol. 29, no. 8, Art. no. 8, 1999.
    7. F. Dausinger, T. Abeln, D. Breitling, J. Radtke, V. Konov, and A. Et, “Bohren keramischer Werkstoffe mit Kurzpuls-Festkörperlasern,” LaserOpto, vol. 31, no. 3, Art. no. 3, 1999.
    8. A. Giesen et al., “Der Scheibenlaser mit neuem Pumpdesign: Erste Ergebnisse,” LaserOpto, vol. 31, no. 1, Art. no. 1, 1999.
    9. C. Hönninger et al., “Ultrafast ytterbium doped bulk laser and laser amplifier,” Applied Physics B, vol. 69, no. 1, Art. no. 1, 1999.
    10. K. Jasper, P. Berger, and H. Hügel, “Strahlführung und -formung zur Effizienzsteigerung bei der Excimerlaser-Materialbearbeitung,” LaserOpto, vol. 31. Jahrgang, no. 4, Art. no. 4, 1999.
    11. K. Jasper et al., “Excimer laser beam homogenizer with low divergence,” Applied Physics, no. A 69 Suppl, Art. no. A 69 Suppl, 1999.
    12. A. Strauch, P. Berger, and H. Hügel, “Gasdynamische Komponenten in der Lasermaterialbearbeitung,” Laser Magazin, Neues aus den Laserzentren, no. 6, Art. no. 6, 1999.
  26. 1998

    1. G. Callies, H. Schittenhelm, P. Berger, and H. Hügel, “Modeling of cluster generation in excimer laser induced plasma/vapour plumes,” (EUROMECH Colloqium 363, Mechanics of Laser Ablation, 23.-26. June 1997). Thermo, vol. 5, no. 2, Art. no. 2, 1998.
    2. G. Callies, H. Schittenhelm, P. Berger, and H. Hügel, “Modeling of the expansion of laser-evapourated matter in argon, helium and nitrogen and the condensation of clusters,” Applied Surface Science, vol. 127, p. 131, 1998.
    3. H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, and P. Berger, “Structuring with excimer lasers-experimental and theoretical investigations on quality and efficiency,” Journal of Laser Applications, vol. 10, no. 6, Art. no. 6, 1998.
    4. V. I. Konov et al., “CO2-laser induced plasma CVD synthesis of diamond,” Applied Physics A, vol. 66, p. 575, 1998.
    5. G. P. Pinho, H. Schittenhelm, W. W. Duley, S. A. Schlueter, H. R. Jahani, and R. E. Mueller, “Energy distributions in the laser ablation of metals and polymers,” Applied Surface Science, vol. 127, p. 983, 1998.
    6. W. Plass, “Normgerechte Zerstörschwellenmessungen an CO2-Laseroptiken,” Laser und Optoelektronik, vol. 30, p. 48, 1998.
    7. W. Plaß, A. Giesen, and H. Hügel, “Normgerechte Zerstörschwellenmessungen an CO2-Laseroptiken,” Laser und Optoelektronik, vol. 30, no. 5, Art. no. 5, 1998.
    8. H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Experimental investigations of the excimer laser induced interaction zone in terms of interaction mechanisms,” (EUROMECH Colloqium 363, Mechanics of Laser Ablation, 23.-26. June 1997). Thermo, vol. 5, no. 2, Art. no. 2, 1998.
    9. H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Two-wavelenght interferometry on excimer laser induced vapour/plasma plumes during the laser pulse,” Applied Surface Science, vol. 127, p. 922, 1998.
    10. H. Schittenhelm, A. Straub, G. Callies, P. Berger, and H. Hügel, “Measurement of wavelength-dependent transmission in excimer laser-induced plasma plumes and their Interpretation,” Journal of Physics D: Applied Physics, vol. 31, p. 418, 1998.
  27. 1997

    1. A. Bachhofer, J. Rapp, C. Schinzel, C. Heimerdinger, and H. Hügel, “Laserstrahlschweißen von Aluminiumlegierungen unter reaktiver Schutzgasatmosphäre,” Teil I: Energieeinkopplung und Prozeßstabilität. Aluminium, vol. 73, no. 11, Art. no. 11, 1997.
    2. B. Hohenberger, C. Schinzel, F. Dausinger, and H. Hügel, “Laserstrahlschweißen von Aluminiumwerkstoffen,” WT Werkstatttechnik, vol. 87, no. 6, Art. no. 6, 1997.
    3. G. Hollemann, R. Koch, G. Hergenhan, A. Giesen, A. Voß, and M. Karszewski, “Effiziente diodengepumpte Scheibenlaser mit nahezu beugungsbegrenzter Strahlung,” Laser und Optoelektronik, vol. 29, p. 76, 1997.
    4. M. Huonker, H. Kindler, and A. Giesen, “Messung der dynamischen Genauigkeit eines Industrieroboters,” F&M (Carl Hanser Verlag), vol. 105, p. 460, 1997.
    5. C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode pumped thin disk Yb:YAG regenerative amplifier,” Applied Physics B, vol. 65, p. 423, 1997.
    6. H. Hügel, “Laser - Universalgerät oder Spezialwerkzeug,” WT Werkstatttechnik, vol. 87, no. 6, Art. no. 6, 1997.
    7. C. Kunz, D. Rantzau, J. Sigel, J. Eschl, and B. Keller, “Der SFB 374 stellt sich vor,” Rechenzentrum der Universität Stuttgart, BI, no. 1/2, Art. no. 1/2, 1997.
    8. W. Plass, R. Mästle, K. Wittig, A. Voß, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Optics Communications, vol. 134, p. 21, 1997.
    9. H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Time-resolved interferometric investigations of the KrF-laser-induced interaction zone,” Applied Surface Science, vol. 109, p. 493, 1997.
  28. 1996

    1. M. Beck, M. Kern, P. Berger, and H. Hügel, “Einfluß der Plasmawolke auf Einkopplung und Prozeßstabilität beim Lasertiefschweißen mit CO2-Lasern,” Laser und Optoelektronik, vol. 28, no. 4, Art. no. 4, 1996.
    2. W. Bloehs, B. Grünenwald, F. Dausinger, and H. Hügel, “Recent Progress in Laser Surface Treatment - II. Adopted processing for high efficiency and quality,” Journal of Laser Applications, vol. 8, no. 2, Art. no. 2, 1996.
    3. W. Bloehs, B. Grünenwald, F. Dausinger, and H. Hügel, “Recent Progress in Laser Surface Treatment -I: Implications of Laser Wavelength,” Journal of Laser Applications, vol. 8, no. 1, Art. no. 1, 1996.
    4. F. Dausinger, J. Rapp, M. Beck, F. Faisst, R. Hack, and H. Hügel, “Welding of aluminium:a challenging opportunity for laser technology,” Journal of Laser Applications, vol. 8, no. 6, Art. no. 6, 1996.
    5. B. Grünenwald, M. Brandner, R. Heigl, F. Dausinger, and H. Hügel, “Beschichten mit CO2- und Nd:YAG-Hochleistungslasern,” Härterei-Technische-Mitteilungen, vol. 51, no. 4, 1996, Art. no. 4, 1996, 1996.
    6. M. Haag, H. Hügel, C. E. Albright, and S. Ramasamy, “CO2 laser light absorption characteristics of metal powders,” Journal of Applied Physics, vol. 79, no. 8, Art. no. 8, 1996.
    7. M. Kern, P. Berger, and H. Hügel, “Optimiertes Querjetkonzept zur effizienten Spritzerablenkung und gesicherten Schutzgaszufuhr beim Laserschweißen,” Laser und Optoelektronik, vol. 28, no. 4, Art. no. 4, 1996.
    8. H. Kindler, R. Volz, and M. Huonker, “Das ’Beam Trap’-Modul - eine Revolution des Laserstrahlbeschichtens,” DVS-Berichte, vol. 175, p. 422, 1996.
    9. A. Raiber, F. Dausinger, and H. Hügel, “Laserbearbeitung in der Mikrotechnik - Potentiale formgebender Verfahren,” WT Produktion und Management, vol. 86, p. 574, 1996.
    10. H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Investigations of extinction coefficients during excimer laser ablation and their interpretation in terms of Rayleigh scattering,” Journal of Physics D: Applied Physics, vol. 29, p. 1564, 1996.
    11. T. Schuster, H. Kuhn, A. Raiber, T. Abeln, and A. Et, “High-precision cutting of high-temperature superconductors,” Applied Physics Letters, vol. 68, no. 18, Art. no. 18, 1996.
    12. J. Sigel, “ECLAT ’96,” Laser und Optoelektronik, vol. 28, no. 6, Art. no. 6, 1996.
  29. 1995

    1. M. Beck, P. Berger, and H. Hügel, “The effect of plasma formation on beam focusing in deep penetration welding with CO2 lasers,” Journal of Physics D: Applied Physics, vol. 28, p. 2430, 1995.
    2. M. Beck and W. Bloehs, “Computer-aided optimiziation of laser hardening in a turning machine,” Manufacturing Systems, vol. 24, p. 1, 1995.
    3. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voß, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 nm and 1053 nm,” Optics Letters, vol. 20, no. 7, Art. no. 7, 1995.
    4. G. Callies, P. Berger, and H. Hügel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” Journal of Physics D: Applied Physics, vol. 28, p. 794, 1995, doi: 10.1088/0022-3727/28/4/026.
    5. F. Dausinger, “Laser-Materialbearbeitung: kostengünstiger durch Steigerung des Einkoppelgrads,” Laser und Optoelektronik, vol. 27, no. 2, Art. no. 2, 1995.
    6. F. Dausinger, F. Faisst, C. Glumann, R. Hack, and R. Iffländer, “Effiziente Strahladdition zum Laserschweißen,” Laser und Optoelektronik, vol. 27, no. 4, Art. no. 4, 1995.
    7. F. Dausinger, C. Glumann, H. Hügel, and J. Rapp, “Der Laser: Innovatives Schweißwerkzeug im Aluminium-Leichtbau,” Trumpf Express, no. Mai, Art. no. Mai, 1995.
    8. C. Hönninger, F. X. Kärtner, G. Zhang, U. Keller, and A. Giesen, “Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Optics Letters, vol. 20, no. 23, Art. no. 23, 1995.
    9. H. Hügel, “Effects of laser specific properties on deep welding,” Lasers in Engineering, vol. 4, p. 201, 1995.
    10. H. Hügel, “Potential of modern CO2-lasers for industrial applications,” Infrared Phys. Technol., vol. 36, no. 1, Art. no. 1, 1995.
    11. H. Hügel, M. Wiedmaier, and T. Rudlaff, “Laser processing integrated into machine tools - design, applications, economy,” Optical and Quantum electronics, vol. 27, p. 1149, 1995.
    12. W. Krepulat, H. Hügel, and P. Berger, “Aerofenster für industrielle Hochleistungslaser,” Laser und Optoelektronik, vol. 27, no. 6, Art. no. 6, 1995.
    13. J. Rapp, C. Glumann, F. Dausinger, and H. Hügel, “Laser welding of aluminium-light-weight materials:problems, applications and readiness for application,” Optical and Quantum Electronics, vol. 27, p. 1203, 1995.
  30. 1994

    1. M. Bea, A. Giesen, and H. Hügel, “Gezielte Steuerung der Fokusgeometrie durch gekoppelte adaptive Systeme,” Laser und Optoelektronik, vol. 26, no. 2, Art. no. 2, 1994.
    2. S. Borik, “Einfluß optischer Komponenten auf die Fokussierbarkeit,” Laser und Optoelektronik, vol. 26, no. 2, Art. no. 2, 1994.
    3. S. Borik and K. Wittig, “Zur Bedeutung des Strahlparameterproduktes für Hochleistungslaser,” Laser und Optoelektronik, vol. 26, no. 2, Art. no. 2, 1994.
    4. A. Giesen, H. Hügel, A. Voß, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state-lasers,” Applied Physics B, vol. 58, p. 365, 1994.
    5. B. Grünenwald, S. Nowotny, W. Hennig, and F. Dausinger, “Waagengeregelter Pulverförderer für das einstufige Laserbeschichten,” Messtechniche Briefe, vol. 30, no. 2, Art. no. 2, 1994.
    6. T. Rudlaff, K. Krastel, and jan Drechsel, “Integration von Lasern in Werkzeugmaschinen,” Laser und Optoelektronik, vol. 26, no. 1, Art. no. 1, 1994.
    7. A. Voß, W. Plass, and A. Giesen, “Simple high-precision method for measuring the specular reflectance of optical components,” Applied Optics, vol. 33, p. 8370, 1994.
    8. M. Wiedmaier, E. Meiners, F. Dausinger, and H. Hügel, “Integrierter Lasereinsatz erweitert Komplettbearbeitung in Drehzentren,” VDI-Z, vol. 136, no. 4, Art. no. 4, 1994.
    9. K. Wittig, A. Giesen, and H. Hügel, “An algebraic approach to characterize paraxial optical systems,” Applied Optics, vol. 33, p. 3837, 1994.
  31. 1993

    1. J. Arnold, G. S. Müller, H. Schneider, H. K. Müller, and H. Hügel, “Herstellung von Mikrostrukturen in SiC-Gleitringdichtungen mit dem Excimerlaser,” Laser und Optoelektronik, vol. 25, no. 6, Art. no. 6, 1993.
    2. W. Bloehs, T. Rudlaff, and F. Dausinger, “Flexible Anpassung der Intensitätsverteilung beim Laserstrahlhärten unterschiedlicher Bauteilgeometrien,” Härterei-Technische-Mitteilungen, vol. 48, p. 13, 1993.
    3. F. Dausinger, “Einkopplung beim Schneiden mit Lasern unterschiedlicher Wellenlänge,” Laser und Optoelektronik, vol. 25, no. 2, Art. no. 2, 1993.
    4. F. Dausinger and J. Shen, “Energy coupling efficiency in laser surface treatment,” ISIJ International, vol. 33, p. 925, 1993.
    5. G. Eberl et al., “Laserspanen eine neue Technologie zum Abtragen,” Laser und Optoelektronik, vol. 25, no. 3, Art. no. 3, 1993.
    6. R. Hack, F. Faisst, E. Meiners, F. Dausinger, and H. Hügel, “Schneiden mit fasergeführtem Nd:YAG-Hochleistungslaser - Festkörperlaser dringt in Bereiche des CO2-Lasers vor,” Laser und Optoelektronik, vol. 25, no. 2, Art. no. 2, 1993.
    7. S. Nowotny, B. Grünenwald, W. Hennig, and F. Dausinger, “Geregelte Pulverzufuhr für die Laser-Oberflächenbearbeitung mit Zusatzwerkstoffen,” Laser und Optoelektronik, vol. 25, no. 6, Art. no. 6, 1993.
    8. T. Rudlaff and H. Hügel, “Laser in der Fertigungstechnik,” Dima/Die Maschine, vol. 47, no. 5, Art. no. 5, 1993.
  32. 1992

    1. F. Dausinger and H. Hügel, “Nutzungspotentiale von Lasern in der Blechverarbeitung,” Bänder, Bleche, Rohre, vol. 7, p. 47, 1992.
    2. B. Grünenwald, E. Bischoff, J. Shen, and F. Dausinger, “Laser surface alloying of case hardening steel with tungsten carbide and carbon,” Materials Science and Technology, vol. 8, p. 637, 1992.
    3. H. Hügel, “Laserschweißen und -schneiden von Blechen,” Maschinenbau, vol. 21, no. 1, Art. no. 1, 1992.
    4. F. Keilmann, R. Hack, and F. Dausinger, “Polarisation gives lasers a new cutting edge,” Opto & Laser Europe, vol. 1, p. 20, 1992.
    5. M. Wiedmaier and H. Hügel, “Festkörperlaser in eine Drehmaschine integriert,” Handelsblatt, vol. 83, no. 18, Art. no. 18, 1992.
  33. 1991

    1. S. Ariely, J. Shen, M. Bamberger, F. Dausinger, and H. Hügel, “Laser surface alloying of steel with TiC,” Surface and Coatings Technology, vol. 45, p. 403, 1991.
    2. F. Dausinger and T. Rudlaff, “Maßnahmen zum Steigern der Effizienz beim partiellen Laserhärten,” Maschinenmarkt, vol. 97, no. 12, Art. no. 12, 1991.
    3. F. Dausinger, T. Rudlaff, and J. Shen, “Einkopplung von CO-Laserstrahlen,” Laser und Optoelektronik, vol. 23, no. 1, Art. no. 1, 1991.
    4. R. Edler and P. Berger, “Vorstellung eines neuen Düsenkonzeptes zum Lasertrennen,” Laser und Optoelektronik, vol. 23, no. 5, Art. no. 5, Oct. 1991.
    5. J. Muckenschnabel, U. Brauch, H. von Bülow, A. Cohen, and E. Zeyfang, “Einsatz von CO-Laserstrahlung zur Züchtung von Kristallen,” Laser und Optoelektronik, vol. 23, no. 1, Art. no. 1, 1991.
    6. S. Nowotny, J. Shen, and F. Dausinger, “Verschleißschutz durch Auftragschweißen von Stellit 21 mit CO2-Laser,” Laser und Optoelektronik, vol. 23, no. 6, Art. no. 6, 1991.
    7. T. Rudlaff, F. Dausinger, R. Satani, H. Kanazawa, and N. Yamaguchi, “Oberflächenumwandlungshärten mit CO-Laser,” Laser und Optoelektronik, vol. 23, no. 1, Art. no. 1, 1991.
    8. J. Shen, F. Dausinger, B. Grünenwald, and S. Nowotny, “Möglichkeiten zur Optimierung der Randschichteigenschaften eines Einsatzstahls mit CO2-Lasern,” Laser und Optoelektronik, vol. 23, no. 6, Art. no. 6, 1991.
  34. 1990

    1. M. Bea and D. Fritz, “Laserstrahl auf neuen Wegen,” Produktion, vol. 18, p. 3, 1990.
    2. M. Bea and W. Hennig, “Vier für acht,” Automobil Produktion, no. 6, Art. no. 6, 1990.
    3. M. Bea and W. Hennig, “Laserstrahlen aus der Steckdose,” Technische Rundschau, vol. 82, no. 34, Art. no. 34, 1990.
    4. F. Dausinger, M. Beck, J. H. Lee, E. Meiners, T. Rudlaff, and J. Shen, “Energy Coupling in Surface Treatment Processes,” Journal of Laser Applications, vol. 2, p. 17, 1990.
    5. F. Dausinger and T. Rudlaff, “Maßnahmen zum Steigern der Effizienz beim partiellen Laserhärten,” Maschinenmarkt, vol. 96, no. 41, Art. no. 41, 1990.
    6. H. Hügel and H. Klingel, “Schneiden von Blechen mit Laserstrahl - Optimale Resultate dank guter Laserprozeßbeherrschung,” Technische Rundschau, vol. 82, no. 34, Art. no. 34, 1990.
    7. U. Schreiner-Mohr, F. Dausinger, and M. Wiedmaier, “Trennen mit CO2-Hochleistungslasern - Einsatz instabiler Resonatoren,” Laser und Optoelektronik, vol. 22, no. 6, Art. no. 6, 1990.
  35. 1989

    1. M. Bea, S. Borik, A. Giesen, and U. Zoske, “Untersuchung der transienten Eigenschaften optischer Komponenten und deren Korrektur durch adaptive Optiken,” Laser und Optoelektronik, vol. 21, no. 4, Art. no. 4, 1989.
    2. M. Beck, F. Dausinger, and H. Hügel, “Studie zur Energieeinkopplung beim Tiefschweißen mit Laserstrahlung,” Laser und Optoelektronik, vol. 21, no. 3, Art. no. 3, 1989.
    3. E. Wildermuth, P. Berger, and H. Hügel, “Aerodynamische Fenster für CO2-Hochleistungslaser,” Laser und Optoelektronik, vol. 21, no. 4, Art. no. 4, 1989.
  36. 1988

    1. F. Dausinger and T. Rudlaff, “Härten mit Hochleistunglasern,” Opto Elektronik Magazin, vol. 4, no. 4, Art. no. 4, 1988.
    2. A. Giesen, S. Borik, and U. Schreiner, “Einfluß der Optik auf den Bearbeitungsprozess,” Opto electronic magazin, vol. 4, no. 1, Art. no. 1, 1988.
    3. H. Hügel, “CO2 - Hochleistungslaser,” Laser und Optoelektronik, vol. 20, no. 2, Art. no. 2, 1988.
    4. T. Rudlaff and F. Dausinger, “Verschleißschutz mit Licht - partielles Härten mit CO2-Lasern,” Technische Rundschau, vol. 37, p. 44, 1988.
  37. 1987

    1. F. Keilmann, A. Giesen, T. Wahl, and S. Borik, “Charakterisierung von CO2-Laserstrahlen durch Plexiglaseinbrand,” Laser Magazin, no. 4, Art. no. 4, 1987.
  38. 1986

    1. E. Schmidt and P. Berger, “Inverse design of supercritical nozzles and cascades,” International Journal for Numerical Methods in Engineering, vol. 22, p. 417, 1986, doi: 10.1002/nme.1620220209.
To the top of the page