Institut für Strahlwerkzeuge (IFSW)

Publikationen

Wissenschaftliche Publikationen der IFSW-Mitarbeiter

Alle Veröffentlichungen des Instituts können in PUMA und auf ResearchGate eingesehen werden.

Zeitschriftenartikel

  1. 2019

    1. C. Ackermann, J. Kleinen, and M. Hossfeld, “Playing on the Ludic Drive - The Potentials of Meaningful Gamification,” The Journal of Communication and Media Studies, vol. 4, no. 2, pp. 35--43, 2019.
    2. O. Bocksrocker, P. Berger, F. Fetzer, V. Rominger, and T. Graf, “Influence of the Real Geometry of the Laser Cut Front on the Absorbed Intensity and the Gas Flow,” Lasers in Manufacturing and Materials Processing, vol. 6, no. 1, pp. 1–13, 2019.
    3. M. Boley, F. Fetzer, R. Weber, and T. Graf, “Statistical evaluation method to determine the laser welding depth by optical coherence tomography,” Optics and Lasers in Engineering, vol. 119, pp. 56--64, 2019.
    4. S. Faas, U. Bielke, R. Weber, and T. Graf, “Scaling the productivity of laser structuring processes using picosecond laser pulses at average powers of up to 420 W to produce superhydrophobic surfaces on stainless steel AISI 316L,” Scientific Reports, vol. 9, no. 1, pp. 1933--, 2019.
    5. A. Feuer, J.-U. Thomas, C. Freitag, R. Weber, and T. Graf, “Single‑pass laser separation of8mm thick glass withamillijoule picosecond pulsed Gaussian–Bessel beam,” Journal of Applied Physics, vol. 125, no. 5, p. 213, 2019.
    6. T. Graf, M. Abdou Ahmed, P. Berger, V. Onuseit, and R. Weber, “The Laser: one universal tool for manufacturing,” Industrial Laser Solutions, pp. 13–15, 2019.
    7. C. Hagenlocher, F. Fetzer, D. Weller, R. Weber, and T. Graf, “Explicit analytical expressions for the influence of welding parameters on the grain structure of laser beam welds in aluminium alloys,” Materials & Design, vol. 174, p. 107791, 2019.
    8. C. Hagenlocher, D. Weller, R. Weber, and T. Graf, “Analytical Description of the Influence of the Welding Parameters on the Hot Cracking Susceptibility of Laser Beam Welds in Aluminum Alloys,” Metallurgical and Materials Transactions A, 2019.
    9. M. Hossfeld, “Time-dependency of mechanical properties and component behavior after friction stir welding,” The International Journal of Advanced Manufacturing Technology, pp. 1–9, 2019.
    10. Y. Qin, D. J. Förster, R. Weber, T. Graf, and S. Yang, “Numerical study of the dynamics of the hole formation during drilling with combined ms and ns laser pulses,” Optics & Laser Technology, vol. 112, pp. 8–19, 2019.
    11. C. Röhrer et al., “Phase Shift Induced Degradation of Polarization Caused by Bends in Inhibited-Coupling Guiding Hollow-Core Fibers,” IEEE Photonics Technology Letters, vol. 31, no. 16, pp. 1362–1365, 2019.
    12. C. Röhrer, C. A. Codemard, G. Kleem, T. Graf, and M. Abdou Ahmed, “Preserving Nearly Diffraction-Limited Beam Quality Over Several Hundred Meters of Transmission Through Highly Multimode Fibers,” Journal of Lightwave Technology, vol. 37, no. 17, pp. 4260–4267, 2019.
    13. K. Schmidt et al., “Entwurf deformierbarer Spiegel für den Einsatz in Hochleistungslasern,” tm - Technisches Messen, vol. 86, no. 3, p. 10, Feb. 2019.
    14. R. Weber, R. Giedl-Wagner, D. J. Förster, A. Pauli, T. Graf, and J. E. Balmer, “Expected X-ray dose rates resulting from industrial ultrafast laser applications,” Applied Physics A, vol. 125, no. 9, p. 635, 2019.
    15. D. Weller, C. Hagenlocher, R. Weber, and T. Graf, “Influence of the solidification path of AlMgSi aluminium alloys on the critical strain rate during remote laser beam welding,” Science and Technology of Welding and Joining, vol. 0, no. 0, pp. 1–5, 2019.
  2. 2018

    1. F. Beirow, M. Eckerle, B. Dannecker, T. Dietrich, M. Abdou Ahmed, and T. Graf, “Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level,” Optics Express, vol. 26, no. 4, p. 10, 2018.
    2. B. Dannecker, M. Rumpel, T. Graf, and M. A. Ahmed, “Trimming method for a high-yield manufacturing of high-efficiency diffraction gratings,” Opt. Lett., vol. 43, no. 16, pp. 4017--4020, 2018.
    3. B. Dannecker et al., “Exploiting nonlinear spectral broadening in a 400 W Yb:YAG thin-disk multipass amplifier to achieve 2 mJ pulses with sub-150 fs duration,” Optics Communications, vol. 429, pp. 180--188, 2018.
    4. T. Dietrich et al., “Thin-disk oscillator delivering radially polarized beams with up to 980 W of CW output power,” Optics Letters, vol. 43, no. 6, 2018.
    5. S. Faas, U. Bielke, R. Weber, and T. Graf, “Prediction of the surface structures resulting from heat accumulation during processing with picosecond laser pulses at the average power of 420 W,” Applied Physics A, vol. 124, no. 9, p. 612, 2018.
    6. S. Faas, D. J. Foerster, R. Weber, and T. Graf, “Determination of the thermally induced focal shift of processing optics for ultrafast lasers with average powers of up to 525 W,” Opt. Express, vol. 26, no. 20, pp. 26020--26029, 2018.
    7. F. Fetzer, H. Hu, P. Berger, R. Weber, P. Eberhard, and T. Graf, “Fundamental investigations on the spiking mechanism by means of laser beam welding of ice,” Journal of Laser Applications, vol. 30, no. 1, pp. 012009-1-012009–9, 2018.
    8. F. Fetzer, M. Sommer, R. Weber, J.-P. Weberpals, and T. Graf, “Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi,” Optics and Lasers in Engineering, vol. 108, pp. 68--77, 2018.
    9. F. Fetzer, C. Hagenlocher, and R. Weber, “High Power, High Speed, High Quality: Advantages of laser beam welding of aluminum sheets at 16 kW of laser power and feed rates up to 50 m/min,” Laser Technik Journal, vol. 15, no. 3, pp. 28--31, 2018.
    10. C. Freitag et al., “Residual heat generated during laser processing of CFRP with picosecond laser pulses,” Adanced Optical Technologies, 2018.
    11. D. J. Förster et al., “Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses,” Applied Surface Science, vol. 440, pp. 926–931, 2018.
    12. D. J. Förster, R. Weber, D. Holder, and T. Graf, “Estimation of the depth limit for percussion drilling with picosecond laser pulses,” Opt. Express, vol. 26, no. 9, pp. 11546--11552, 2018.
    13. C. Hagenlocher, F. Fetzer, R. Weber, and T. Graf, “Benefits of very high feed rates for laser beam welding of AlMgSi aluminum alloys,” Journal of Laser Applications, vol. 30, no. 1, pp. 012015--, 2018.
    14. C. Hagenlocher, M. Sommer, F. Fetzer, R. Weber, and T. Graf, “Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum,” Materials & Design, vol. 160, pp. 1178–1185, 2018.
    15. C. Hagenlocher, D. Weller, R. Weber, and T. Graf, “Reduction of the hot cracking susceptibility of laser beam welds in AlMgSi alloys by increasing the number of grain boundaries,” Science and Technology of Welding and Joining, vol. 24, no. 4, pp. 313–319, 2018.
    16. C. Hagenlocher, P. Stritt, R. Weber, and T. Graf, “Strain signatures associated to the formation of hot cracks during laser beam welding of aluminum alloys,” Optics and Lasers in Engineering, vol. 100, pp. 131--140, 2018.
    17. C. Hagenlocher, M. Seibold, R. Weber, and T. Graf, “Modulation of the local grain structure in laser beam welds to inhibit the propagation of centerline hot cracks,” Procedia CIRP, vol. 74, pp. 434--437, 2018.
    18. M. Jarwitz, F. Fetzer, R. Weber, and T. Graf, “Weld Seam Geometry and Electrical Resistance of Laser-Welded, Aluminum-Copper Dissimilar Joints Produced with Spatial Beam Oscillation,” Metals, vol. 8, no. 7, p. 510, 2018.
    19. T. Kononenko, C. Freitag, M. Komlenok, R. Weber, T. Graf, and V. Konov, “Heat accumulation between scans during multi-pass cutting of carbon fiber reinforced plastics,” Applied Physics A, vol. 124, p. 217, 2018.
    20. T. Kononenko, C. Freitag, D. Sovyk, A. Lukhter, K. Skvortsov, and V. Konov, “Influence of pulse repetition rate on percussion drilling of Ti-based alloy by picosecond laser pulses,” Optics and Lasers in Engineering, vol. 103, pp. 65–70, 2018.
    21. A. Kroschel, M. Andreas, and G. Thomas, “Model of the final borehole geometry for helical laser drilling,” Advanced Optical Technologies, vol. 7, no. 3, pp. 183–188, 2018.
    22. A. Kroschel, A. Michalowski, F. Bauer, and T. Graf, “Calculating the Borehole Geometry Produced by Helical Drilling with Ultrashort Laser Pulses,” JLMN-Journal of Laser Micro/Nanoengineering, vol. 13, no. 3, pp. 263–267, 2018.
    23. R.-A. Lorbeer, J. Pastow, M. Sawannia, P. Klinkenberg, D. J. Förster, and H.-A. Eckel, “Power Spectral Density Evaluation of Laser Milled Surfaces,” Materials, vol. 11, no. 1, 2018.
    24. K. Schmidt, P. Wittmüß, S. Piehler, M. Abdou Ahmed, T. Graf, and O. Sawodny, “Modellierung optisch adressierter Spiegel für adaptive Hochleistungslaser,” at-Automatisierungstechnik, vol. 66, no. 7, pp. 506–520, 2018.
    25. K. Schmidt, P. Wittmuess, S. Piehler, M. Abdou Ahmed, T. Graf, and O. Sawodny, “Modeling and simulating the thermoelastic deformation of mirrors using transient multilayer models,” Mechatronics, vol. 53, pp. 168–180, 2018.
    26. S. Schmidt et al., “The next generation of laser spectroscopyexperiments using light muonic atoms,” Journal of Physics, vol. Conf. Series, no. 1138, pp. 1–17, 2018.
    27. D. Weller, C. Hagenlocher, T. Steeb, R. Weber, and T. Graf, “Self-restraint hot cracking test for aluminum alloys using digital image correlation,” Procedia CIRP, vol. 74, pp. 430--433, 2018.
  3. 2017

    1. O. Bocksrocker, P. Berger, B. Regaard, V. Rominger, and T. Graf, “Characterization of the melt flow direction and cut front geometry in oxygen cutting with a solid state laser,” Journal of Laser Applications, vol. 29, no. 2, p. 022202, 2017.
    2. T. Dietrich et al., “Highly-efficient continuous-wave intra-cavity frequency-doubled Yb: LuAG thin-disk laser with 1 kW of output power,” Optics Express, vol. 25, no. 5, pp. 4917--4925, 2017.
    3. T. Dietrich et al., “Large-area pulse compression gratings with high efficiency and high damage threshold,” Topical meeting on Diffractive Optics, EOS, (2017), 2017.
    4. T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. Abdou-Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Optics Letters, vol. 42, no. 17, pp. 3263--3266, 2017.
    5. T. Dietrich et al., “Highly-efficient continuous-wave intra-cavity frequency-doubled Yb:LuAG thin-disk laser with 1 kW of output power,” Optics Express, vol. 25, no. 5, pp. 4917–4925, 2017.
    6. M. Diez, M. Ametowobla, and T. Graf, “Time-Resolved Reflectivity and Temperature Measurements During Laser Irradiation of Crystalline Silicon,” JLMN - Journal of Laser Micro/Nanoengineering, vol. 12, no. 3, pp. 230–234, 2017.
    7. M. Eckerle et al., “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Applied Physics B, vol. 123, no. 5, p. 139, 2017.
    8. M. Eckerle et al., “High-power single-stage single-crystal Yb: YAG fiber amplifier for radially polarized ultrashort laser pulses,” Applied Physics B, vol. 123, no. 5, p. 139, 2017.
    9. S. Faas, C. Freitag, S. Boley, P. Berger, R. Weber, and T. Graf, “Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam,” Applied Physics A, vol. 123, p. 156, 2017.
    10. F. Fetzer, P. Stritt, P. Berger, R. Weber, and T. Graf, “Fast numerical method to predict the depth of laser welding,” Journal of Laser Applications, vol. 29, no. 2, p. 022012, 2017.
    11. C. Freitag, M. Wiedenmann, R. Weber, and T. Graf, “Strategien zur schädigungsarmen Laserbearbeitung von CFK,” 25. Stuttgarter Kunststoffkolloquium, 2017.
    12. J. GUTEKUNST et al., “Fiber-integrated spectroscopy device for hot alkali vapor,” Applied Optics, vol. 56, no. 21, pp. 5898–5902, 2017.
    13. K. Heller, S. Kessler, F. Dorsch, P. Berger, and T. Graf, “Analytical description of the surface temperature for the characterization of laser welding processes,” International Journal of Heat and Mass Transfer, vol. 106, pp. 958–969, 2017.
    14. M. Jarwitz, R. Weber, and T. Graf, “Analytical model for the extent of the heat-affected zone occurring during overlap laser welding of dissimilar materials,” Journal of Applied Physics, vol. 122, no. 13, p. 135104, 2017.
    15. R.-A. Lorbeer et al., “Thrust noise minimization in long-term laser ablation of propellant material in the nanosecond and picosecond regime,” Optical Engineering, vol. 56, no. 1, pp. 011010--011010, 2017.
    16. R.-A. Lorbeer et al., “Thrust noise minimization in long-term laser ablation of propellant material in the nanosecond and picosecond regime,” Optical Engineering, vol. 56, no. 1, pp. 011010--011010, 2017.
    17. J.-P. Negel et al., “Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization,” Applied Physics B, vol. 123, no. 5, p. 156, 2017.
    18. S. Piehler, T. Dietrich, P. Wittmmuess, O. Sawodny, M. Abdou Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Optics Express, vol. 25, no. 4, p. 4254, 2017.
    19. S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. Abdou Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express, vol. 25, no. 4, pp. 4254--4267, 2017.
    20. C. Röhrer, G. Kleem, M. A. Ahmed, and T. Graf, “Analysis of fundamental-mode beam transport in highly multimode fibers,” Journal of Lightwave Technology, vol. 35, no. 17, pp. 3637--3642, 2017.
    21. M. Schaefer, S. Kessler, P. Scheible, and T. Graf, “Modulation of the laser power to prevent hot cracking during laser welding of tempered steel,” Journal of Laser Applications, vol. 29, no. 4, p. 042008, 2017.
    22. M. Schaefer, S. Kessler, F. Fetzer, and T. Graf, “Influence of the focal position on the melt flow during laser welding of          steel,” Journal of Laser Applications, vol. 29, no. 1, p. 012010, 2017.
    23. M. Schäfer, S. Kessler, F. Fetzer, and T. Graf, “Influence of the focal position on the melt flow during laser welding of steel,” Journal of Laser Applications, vol. 29, no. 1, p. 012010, 2017.
    24. M. Sommer, J.-P. Weberpals, S. Müller, P. Berger, and T. Graf, “Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold,” Journal of Laser Applications, vol. 29, no. 1, 2017.
    25. R. Weber, T. Graf, C. Freitag, A. Feuer, T. Kononenko, and V. Konov, “Processing constraints resulting from heat accumulation during pulsed and repetive laser materials processing,” Optics Express, vol. 25, no. 4, pp. 3966–3979, 2017.
    26. R. Weber, T. Graf, C. Freitag, A. Feuer, T. Kononenko, and V. I. Konov, “Processing constraints resulting from heat accumulation during pulsed and repetitive laser materials processing,” Opt. Express, vol. 25, no. 4, pp. 3966--3979, 2017.
    27. J.-H. Wolter, M. A. Ahmed, and T. Graf, “Thin-disk laser operation of Ti: sapphire,” Optics letters, vol. 42, no. 8, pp. 1624--1627, 2017.
  4. 2016

    1. M. Eckerle et al., “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” OPTICS LETTERS, vol. 41, no. 7, pp. 1680–1683, 2016.
    2. F. Fetzer, M. Jarwitz, P. Stritt, R. Weber, and T. Graf, “Fine-tuned remote laser welding of aluminum to copper with local beam oscillation,” Physics Procedia, vol. 83, pp. 455--462, 2016.
    3. H. Hu, F. Fetzer, P. Berger, and P. Eberhard, “Simulation of laser welding using advanced particle methods,” GAMM-Mitteilungen, vol. 39, no. 2, pp. 149--169, 2016.
    4. H. P. Kahle et al., “Semiconductor membrane external-cavity surface-emitting laser (MECSEL),” Optica, vol. 3, no. 12, p. 1506, 2016.
    5. S. Piehler, T. Dietrich, M. Rumpel, T. Graf, and M. A. Ahmed, “Highly efficient 400 W near-fundamental-mode green thin-disk laser,” OPTICS LETTERS, vol. 41, no. 1, pp. 171–174, 2016.
    6. S. Scharring, R.-A. Lorbeer, S. Karg, L. Pastuschka, D. J. Förster, and H.-A. Eckel, “The MICROLAS concept: precise thrust generation in the micronewton range by laser ablation,” 2016.
    7. P. Wittmuess, S. Piehler, T. Dietrich, M. A. Ahmed, T. Graf, and O. Sawodny, “Numerical modeling of multimode laser resonators,” JOSA B, vol. 33, no. 11, pp. 2278--2287, 2016.
  5. 2015

    1. E. Caracciolo et al., “Single-grating-mirror intracavity stretcher design for chirped pulse regenerative amplification,” Optics Letters, vol. 40, no. 7, pp. 1532–1535, 2015.
    2. T. Dietrich, M. Rumpel, T. Graf, and M. A. Ahmed, “Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb:YAG thin-disk laser,” OPTICS EXPRESS, vol. 23, no. 20, pp. 26651–26659, 2015.
    3. C. Freitag et al., “High-quality processing of CFRP with a 1.1-kW picosecond laser,” Applied Physics A, 2015.
    4. T. Graf, P. Berger, R. Weber, H. Hügel, A. Heider, and P. Stritt, “Analytical expressions for the threshold of deep-penetration laser welding,” Laser Physics Letters, vol. 12, no. 5, p. 056002, 2015.
    5. G. Granger, C. Röhrer, G. Kleem, M. Abdou Ahmed, and T. Graf, “Generation of Supercontinuum LP0n Modes in Highly Multimode Gradient-Index Fiber,” Advanced Solid State Lasers OSA Technical Digest (Optical Society of America, 2015)), paper ATu2A.36, vol. paper ATu2A.36, 2015.
    6. A. Loescher, J.-P. Negel, T. Graf, and M. Abdou Ahmed, “Radially polarized emission with 635  W of average power and 2.1  mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier,” Optics Letters, vol. 40, no. 24, pp. 5758–5761, 2015.
    7. C. M. N. Mateo et al., “Enhanced efficiency of AlGaInP disk laser by in-well pumping,” Optics Express, vol. 23, no. 3, p. 2472, 2015.
    8. P. Mucha, P. Berger, R. Weber, N. Speker, B. Sommer, and T. Graf, “Calibrated heat flow model for the determination of different heat-affected zones in single-pass laser-cut CFRP using a cw CO2 laser,” Applied Physics A, vol. 118, no. 4, pp. 1509–1516, 2015.
  6. 2014

    1. A. Aubourg et al., “1617 nm emission control of an Er:YAG laser by a corrugated single-layer resonant grating mirror,” Optics Letters, vol. 39, no. 3, p. 466, 2014.
    2. B. Dannecker et al., “Passively mode-locked Yb:CaF2 thin-disk laser,” Optics Express, vol. 22, no. 19, pp. 22278–22284, 2014.
    3. C. Freitag, R. Weber, and T. Graf, “Polarization dependence of laser interaction with carbon fibers and CFRP,” Optics Express, vol. 22, no. 2, pp. 1474–1479, 2014.
    4. A. Heider, T. Arnold, P. Stritt, R. Weber, and T. Graf, “HIGH-POWER LASER SOURCES ENABLE HIGH-QUALITY LASER WELDING OF COPPER,” ICALEO, 19.-23.10.2014, San Diego, USA, 2014.
    5. A. Hein and U. Brauch, “Optically In-Well-Pumped Semiconductor Disk Laser With Low Quantum Defect,” Annual Report, Institute of Optoelectronics, Ulm University, pp. 69--76, 2014.
    6. T. V. Kononenko et al., “Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses,” Journal of Applied Physics, vol. 115, no. 10, 2014.
    7. H. Nakao et al., “Yb3+-doped ceramic thin-disk lasers of Lu-based oxides,” Optical Materials Express, vol. 4, no. 2121, p. 2116, 2014.
    8. N. Nakao et al., “Demonstration of a Yb3+-doped Lu3Al5O12 ceramic thin-disk laser,” Optics Letters, vol. 39, no. 10, pp. 2884–2887, 2014.
    9. J.-P. Negel, “Durchbruch mit UKP-Lasern am IFSW,” Laser Magazin, no. 2, 2014.
    10. J.-P. Negel et al., “Delivery of 800 W of nearly diffraction-limited laser power through a 100 m long multi-mode fiber,” Laser Physics Letters, 2014.
    11. M. Rumpel, M. Möller, C. Moormann, T. Graf, and M. Abdou Ahmed, “Broadband pulse compression gratings with measured 99.7% diffraction efficiency,” Optics Letters, vol. 39, no. 2, p. 323, 2014.
    12. P. Stritt, C. Hagenlocher, C. Kizler, R. Weber, C. Rüttimann, and T. Graf, “Laser spot welding of copper-aluminum joints using a pulsed dual wavelength laser at 532 and 1064 nm,” Physics Procedia, vol. 56, no. 56, pp. 759–767, 2014.
    13. P. Stritt and D. Weller, “Temperature and Stress Behavior During Close-Edge Laser Welding,” Laser Technik Journal, vol. 11, no. 3, pp. 54–56, 2014.
    14. A. Voß et al., “Thin-disk laser operation of Pr3+,Mg2+:SrAl12O19,” Optics Letters, vol. 39, no. 5, pp. 1322–25, 2014.
    15. R. Weber et al., “Heat accumulation during pulsed laser materials processing,” Optics Express, vol. 22, no. 9, p. 11312, 2014.
    16. D. Weller et al., “Influence of a multi-alloy aluminum design on the process efficiency during laser welding,” 8th International Conference on Photonic Technologies LANE 2014, 2014.
    17. D. Weller et al., “Effects of Joining Geometries on Cracking Susceptibility and Process Efficiency Using Multi-Alloy Aluminium,” ICALEO, 19.-23.10.2014, San Diego, USA, vol. ICALEO 2014, 2014.
    18. K. S. Wentsch, B. Weichelt, F. Druon, P. Georges, M. Abdou Ahmed, and T. Graf, “Yb:CaF2 thin-disk laser,” Optics Express, vol. 22, no. 2, p. 1524, 2014.
  7. 2013

    1. M. Jarwitz, V. Onuseit, R. Weber, and T. Graf, “Spectral analysis of laser processing of carbon fiber reinforced plastics,” Physics Procedia, vol. 41, pp. 489–494, 2013.
  8. 2012

    1. X. Délen et al., “250 W single crystal fiber Yb:YAG laser,” OSA Technical Digest - Advanced Solid-State Photonics (ASSP) 2012 paper: AM6A.2, p. AM6A.2, 2012.
    2. C. Freitag, V. Onuseit, R. Weber, and T. Graf, “High-speed observation of the heat flow in CFRP during laser processing,” Physics Procedia, vol. 39, pp. 171–178, 2012.
    3. R. Weber et al., “Short-pulse laser processing of CFRP,” Physics Procedia, vol. 39, p. 137, 2012.
  9. 2011

    1. V. Onuseit, M. Abdou Ahmed, R. Weber, and T. Graf, “Space-resolved Spectrometric Measurements of the Cutting Front,” Physics Procedia, 2011.
    2. R. Weber et al., “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia, 2011.
  10. 2010

    1. R. Pohl et al., “The size of the proton,” Nature, vol. 466, no. 7303, pp. 213--216, 2010.
  11. 2009

    1. A. Antognini et al., “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE Journal of Quantum Electronics, vol. 45, p. 993, 2009.
    2. B. Shalaby et al., “Quasi Gaussian beam from a multicore fibre laser by phase locking of supermodes,” Applied Physics B, vol. 97, no. 3, pp. 599–605, 2009.
    3. S. M. Ulrich et al., “Control of single quantum dot emission characteristics and fine structure by lateral electric fields,” physica status solidi (b), vol. 246, no. 2, p. 302, 2009.
    4. M. M. Vogel, M. Abdou Ahmed, A. Voß, and T. Graf, “Very-large-mode-area, single-mode multicore fiber,” Optics Letters, vol. 34, no. 18, p. 2876, 2009.
    5. X. Wang et al., “Laser drilling of stainless steel with nanosecond double-pulse,” Optics & Laser Technology, vol. 41, p. 148, 2009.
  12. 2008

    1. F. Abt, A. Heß, and F. Dausinger, “Focusing High-Power, Single-Mode Laser Beams,” Photonics Spectra, vol. 42, no. Mai, p. 78, 2008.
    2. F. Abt and A. Heß, “Strahldiagnostik im Diagnostikzentrum der FGSW Fokussierung von Single-Mode Laserstrahlung im kW-Bereich,” Laser Magazin, vol. 29.04.2008, no. 02, p. 22, 2008.
    3. A. Blug, F. Abt, L. Nicolosi, M. Geese, and R. Tetzlaff, “CNN: Pixelparallele Bildverarbeitung ermöglicht Prozessregelung beim Laserschweißen,” Photonik, vol. 06/2008, no. 06, pp. 30–32, 2008.
    4. A. Heß and F. Abt, “Laserstrahltiefschweißen von Kupferwerkstoffen im Dauerstrichbetrieb,” Laser Magazin, no. 5, p. 28, 2008.
    5. M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” JLMN - Journal of Laser Micro/Nanoengineering, vol. 3, no. 3, pp. 129–134, 2008.
    6. A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt Dynamics and Hole Formation during Drilling with Ultrashort Pulses,” Journal of Laser Micro/Nanoengineering, vol. 3, no. 3, p. 211, 2008.
    7. A. Popp, M. Abdou Ahmed, D. Kauffmann, A. Voß, and T. Graf, “Cw-operation of an Ytterbium-doped 19-core fiber laser,” SPIE Phtonics 2008, vol. 6998, 2008.
    8. C. Thiel, “Multimodale Prozessüberwachung beim Laserstrahlschweißen mit Strahlquellen höchster Brillanz,” Laser Magazin, vol. 06/2008, no. 06, pp. 38–39, 2008.
  13. 2007

    1. M. Abdou Ahmed, J. Schulz, A. Voß, O. Parriaux, J. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intra-cavity resonant grating mirror,” Optics Letters, vol. 32, no. 13, p. 1824, 2007.
    2. M. Abdou Ahmed, A. Voß, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Optics Letters, vol. 32, no. 22, p. 3272, 2007.
    3. S.-S. Beyertt et al., “Efficient gallium-arsenide disk laser,” IEEE Journal of Quantum Electronics, vol. 43, p. 869, 2007.
    4. A. Giesen, J. Speiser, R. Peters, C. Kränkel, and K. Petermann, “Thin Disk Lasers Come of Age,” Photonics Spectra, 2007.
    5. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 3, p. 598, 2007.
    6. A. Kireev, T. Graf, and H. P. Weber, “Phase-Locking in Fibre Laser Arrays,” Laser Physics Letters, vol. 4, p. 50, 2007.
    7. M. Larionov, F. Butze, D. Nickel, and A. Giesen, “High-repetition-rate regenerative thin-disk amplifier with 116�J pulse energy and 250 fs pulse duration,” Optics Letters, vol. 32, no. 5, p. 494, 2007.
    8. F. Pigeon et al., “Microchip-laser polarization control by destructive-interference resonant-grating mirror,” Optics Express, vol. 15, no. 5, p. 2573, 2007.
    9. H. Ridderbusch and T. Graf, “Saturation of 1047 nm and 1064 nm absorption in Cr4+:YAG crystals,” IEEE Journal of Quantum Electronics, vol. 43, pp. 168–173, 2007.
    10. N. Schulz et al., “Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35 µm,” Applied Physics Letters, vol. 91, p. 091113, 2007.
    11. C. Stolzenburg, “Gepulster Scheibenlaser im grünen Spektralbereich - Eine maßgeschneiderte Lösung für die Flachbildschirm-Industrie,” Laser Magazin, no. 1, p. 12, 2007.
    12. C. Stolzenburg, A. Giesen, F. Butze, P. Heist, and G. Hollemann, “Cavity-dumped intracavity-frequency-doubled Yb:YAG thin disk laser with 100 W average power,” Optics Letters, vol. 32/9, p. 1123, 2007.
    13. A. Voß, M. Abdou Ahmed, and T. Graf, “Extension of the Jones Matrix Formalism to Higher Order Transverse Modes,” Optics Letters, vol. 32, no. 2, 2007.
    14. J.-P. Weberpals, F. Dausinger, G. Göbel, and B. Brenner, “Role of strong focusability on the welding process,” Journal of Laser Applications, vol. 19, no. 4, pp. 252–258, 2007.
  14. 2006

    1. M. Abdou Ahmed, T. Moser, F. Pigeon, O. Parriaux, and T. Graf, “Intra-cavity polarizing element for Nd:YAG laser,” Laser Physics Letters, vol. 3, no. 3, p. 129, 2006.
    2. M. Abdou Ahmed and T. Graf, “Double-resonance grating mirror for polarization control in solid-state lasers,” Laser Physics Letters, vol. Vol. 3, no. 4, p. 178, 2006.
    3. U. Brauch, “Halbleiter-Scheibenlaser";"PhotonicsBW newsletter,” 04, vol. Dezember, no. 23, p. Laserentwicklung;, 2006.
    4. P. Geiser, U. Willert, D. Walter, and W. Schade, “A subnanosecond pulsed laser source for mid-infrared LIDAR,” Applied Physics B: Lasers and Optics, vol. 83, no. 2, p. 175, 2006.
    5. M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror,” Journal of Applied Physics B, vol. 83, pp. 43–50, 2006.
    6. X. Jin, P. Berger, and T. Graf, “Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding,” Journal of Physics D: Applied Physics, vol. 39, p. 4703, 2006.
    7. M. S. Roth, V. Romano, T. Feurer, and T. Graf, “Self-compensating amplifier design for cw and Q-switched high-power Nd:YAG lasers,” Optics Express, vol. 14, pp. 2191–2196, 2006.
    8. N. Schulz et al., “High power continuous wave operation of a GaSb-based VECSEL emitting near 2. 3 µm,” physica status solidi (c), vol. 3, p. 386, 2006.
    9. N. Schulz et al., “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photonics Technology Letters, vol. 18, no. 9, p. 1070, 2006.
    10. J.-P. Weberpals, C. Deininger, and F. Dausinger, “Vorteile guter Fokussierbarkeit,” Laser Technik Journal, vol. 2, no. März, p. 31, 2006.
    11. J.-P. Weberpals, “Schweißeigenschaften von Lasern guter Fokussierbarkeit,” Werkstoffe in der Fertigung, vol. 4, no. Juli, pp. 34–35, 2006.
  15. 2005

    1. A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Applied Physics B, no. Nov 2005, p. 1, 2005.
    2. P. Berger, F. Dausinger, A. Giesen, and T. Graf, “Research on lasers and laser applications,” Themenheft Forschung <<Photonics>>, Universität Stuttgart, ISSN 1861-0269, no. 2, pp. 22–29, 2005.
    3. A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Applied Physics B, vol. 80, p. 655, 2005.
    4. S.-S. Beyertt, E. Gerster, and M. Zorn, “Semiconductor Thin-Disk Lasers,” Photonics Spectra, no. Mai, 2005.
    5. S.-S. Beyertt, U. Brauch, A. Giesen, E. Gerster, and M. Zorn, “Direct Pumping of Quantum Wells Improves Performance of Semiconductor Thin-Disk Lasers,” Photonics Spectra, vol. 39, no. 6, p. 60, 2005.
    6. S.-S. Beyertt et al., “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE Journal of Quantum Electronics, vol. 41, no. 12, pp. 1439–1449, 2005.
    7. U. Brauch, “Halbleiter-Scheibenlaser,” LaserMagazin, no. 01, 2005.
    8. N. Destouches et al., “99% efficiency measured in the -1rst order of a resonant grating,” Optics Express, vol. 13, p. 3230, 2005.
    9. M. I. Engl et al., “185-mW CW Operation at 658 nm of a Vertical External Cavity Thin Disc Semiconductor Laser,” Photonics Technology Letters, 2005.
    10. A. Kireev and T. Graf, “Symmetric Vector Coupled-Mode Theory of Dielectric Waveguides,” Optics Communications, vol. 244, no. 1–6, pp. 25–35, 2005.
    11. R. Le Harzic et al., “Processing of metals by double pulses with short laser pulses,” Applied Physics A, vol. A 81, no. 6, p. 1121, 2005.
    12. T. Moser et al., “Polarization selective grating mirrors used in the generation of radial polarization,” Applied Physics B, vol. 80, no. 6, pp. 707–713, 2005.
    13. D. Nickel et al., “200 kHz electro-optic switch for ultrafast laser systems.,” Review of Scientific Instruments, vol. 76, 2005.
    14. M. Ostermeyer, P. Kappe, R. Menzel, S. Sommer, and F. Dausinger, “Laser drilling in thin materials with bursts of ns-pulses generated by stimulated Brillouin scattering (SBS),” Applied Physics A: Materials Science & Processing, vol. A 81, no. Nr. 5, pp. 923–927, 2005.
    15. K. Petermann et al., “Highly Yb-doped oxides for thin-disk lasers,” Journal of Crystal Growth, vol. 275, no. 1–2, p. 135, 2005.
    16. J.-P. Weberpals, “Anwendungspotenzial stark fokussierender Laser,” Laser Magazin, no. 6, p. 26, 2005.
    17. E. W. Wyss, T. Graf, and H. P. Weber, “Solid-State Lasers at the Stability Limit: Constant Beam Properties over Large Power Ranges,” IEEE Journal of Quantum Electronics, vol. 41, no. 5, pp. 671–676, 2005.
  16. 2004

    1. A. Letsch and A. Giesen, “Laser Beam Characterization of a Diode Stack,” Photonics Spectra, vol. 38, no. 4, p. 58, 2004.
    2. N. N. Nedialkov et al., “Laser ablation of iron by ultrashort laser pulses,” Thin Solid Films, vol. 453–454, pp. 496–500, 2004.
    3. D. Nickel, “Ultrakurzpuls-Scheibenlaser für die hochpräzise Materialbearbeitung,” Laser Magazin, vol. 5, p. 24, 2004.
    4. D. Nickel, C. Stolzenburg, A. Giesen, and F. Butze, “Ultrafast thin-disk Yb:KY(WO4)2 regenerative amplifier with a 200-kHz repetition rate,” Optics Letters, vol. 29, no. 23, p. 2764, 2004.
    5. M. H. Niemz et al., “Tooth ablation using a CPA-free thin disk femtosecond laser system.,” Applied Physics, vol. 79, p. 269, 2004.
    6. F. Reinert, T. Graf, W. Lüthy, and H. P. Weber, “Optically Controlled Adaptive Mirror,” Laser Physics Letters, vol. 1, no. 11, pp. 551–554, 2004.
    7. S. B. Ubizskii et al., “Optical properties of epitaxial YAG:Yb films.,” Physica Status Solidi A-Applied Research, vol. 201, no. 7, p. 791, 2004.
  17. 2003

    1. U. Brauch, “Book Review: Selected papers on tunable solid-state lasers.,” Optics and Laser Technology, vol. 35, no. 7, p. 579, 2003.
    2. G. Hergenhan, B. Lücke, and U. Brauch, “Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements: concept and experimental verification,” Applied Optics, vol. 42, no. 9, p. 1667, 2003.
    3. L. P. Jones et al., “Towards advanced welding methods for the ITER vacuum vessel sectors,” Fusion Engineering and Design, vol. 69, pp. 215–220, 2003.
    4. R. Klieber, A. Michalowski, R. Neuhaus, and D. Suter, “Nuclear quadrupole resonance of an electronically excited statefrom high-resolution hole-burning spectroscopy,” Physical Review B, vol. 67, pp. 184103-1-184103–6, 2003.
    5. J. Müller-Borhanian, “Integration optischer Messmethoden zur Prozesskontrolle beim Laserstrahlschweißen.,” Laser Magazin, no. 1, 2003.
  18. 2002

    1. P. A. Atanasov et al., “Laser ablation of Ni by ultrashort pulses: molecular dynamics simulation,” Applied Surface Science, vol. 186, pp. 369–373, 2002.
    2. P. A. Atanasov et al., “Laser ablation of Ni by ultrashort pulses: molecular dynamics simulation,” Applied Surface Science, vol. 186, pp. 369–373, 2002.
    3. F. Dausinger, W. Gref, and A. Ruß, “Festkörperlaser zum Schweißen: Präziser Strahl schafft neue Potenziale,” Laser Magazin, no. 4, p. 20, 2002.
    4. A. Ruß, W. Gref, F. Dausinger, and H. Hügel, “The thin disk laser - a high precision welding tool,” The industrial laser user, vol. 29, p. 40, 2002.
    5. H. Sakamoto, K. Shibata, and F. Dausinger, “Effect of Alloy Elements on Weld Properties in CO2 Laser Welding of Aluminum Alloys,” Journal of Light Metal Welding and Construction, vol. 40, no. 11, p. 35, 2002.
  19. 2001

    1. G. Ambrosy, P. Berger, H. Hügel, and D. Lindenau, “Magnetisch unterstütztes Laserstrahlschweißen,” LaserOpto, vol. 33, no. 6, p. 48, 2001.
    2. F. Brunner et al., “Widely tunable pulse durations from a passively mode-locked thin disk Yb:YAG Laser,” Optics Letters, vol. 26, p. 379, 2001.
    3. K. Contag, B. Lücke, A. Giesen, and H. Hügel, “Eine neue Generation von Lasern höchster Fokussierbarkeit für die Fertigungstechnik: Scheibenlaser und phasengekoppelte Diodenlaser,” WT Werkstatttechnik, vol. 91, p. 142, 2001.
    4. K. Contag, B. Lücke, A. Giesen, and H. Hügel, “Scheibenlaser und phasengekoppelte Diodenlaser: Eine neue Generation von Lasern mit hoher Fokussierbarkeit für die Fertigungstechnik,” WT Werkstatttechnik, vol. 91, no. 3, p. 142, 2001.
    5. T. Fuhrich, P. Berger, and H. Hügel, “Marangoni effect in laser deep penetration welding of steel,” Journal of Laser Applications, vol. 13, no. 5, pp. 178--186, 2001.
    6. G. Hergenhan, M. Scholl, B. Lücke, and U. Brauch, “Kohärente Vertikalemitter-Arrays,” Laser Opto, vol. 33, p. 68, 2001.
    7. T. V. Kononenko, V. I. Konov, S. V. Garnov, S. M. Klimentov, and F. Dausinger, “Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation,” Laser Physics, vol. 11, no. 3, p. 343, 2001.
    8. B. Lücke, G. Hergenhan, U. Brauch, and A. Giesen, “Phase Tuning of Injection Locked VCSELs,” IEEE Photonics Technology Letters, vol. 13, no. 2, p. 100, 2001.
    9. R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, “Passive mode locking of thin-disk lasers: effects of spatial hole burning,” Applied Physics B, vol. 72, p. 267, 2001.
    10. A. Ruf, P. Berger, F. Dausinger, and H. Hügel, “Analytical investigations on geometrical influences on laser drilling,” Journal of Physics D: Applied Physics, vol. 34, p. 2918, 2001.
    11. A. Ruß, “Hochpräzises Strahlwerkzeug Scheibenlaser,” Laser Magazin, no. 6, p. 24, 2001.
    12. R. Xiao, G. Ambrosy, T. Zuo, and H. Hügel, “New approach to improve the laser welding process of aluminum by using an external electrical current,” Journal of materials science letters, no. 20, p. 2163, 2001.
  20. 2000

    1. T. Abeln, J. Radtke, and F. Dausinger, “High Precision Drilling with Solid-State Lasers,” Lambda Physik Highlights, no. 57, p. 5, 2000.
    2. S. Amarande, H. Giesen, and H. Hügel, “Propagation analysis of self-convergent beam width and charakterization of hard edge diffracted beams,” Applied Optics, vol. 39, p. 3914, 2000.
    3. P. A. Atanasov, S. E. Imamova, and T. Hügel H., Abeln, “Optical parameters of silicon carbide and silicon nitride ceramics in 0.2 - 1.3 mm spectral range,” Journal of Applied Physics, vol. 88, no. 8, pp. 4671–4675, 2000.
    4. J. Aus der Au et al., “16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Optics Letters, vol. 25, no. 11, p. 859, 2000.
    5. M. Brandner, G. Seibold, C. Chang, F. Dausinger, and H. Hügel, “Soldering with solid state and diode lasers: Energy coupling, temperature rise, process window,” Journal of Laser Applications, vol. 12, no. 5, p. 194, 2000.
    6. M. Kern, P. Berger, and H. Hügel, “Magnetofluiddynamische Beeinflussung der Schweißnahtqualität beim Laserstrahlschweißen mit CO2-Laser,” Schweissen & Schneiden, vol. 52, no. 3, p. 140, 2000.
    7. M. Kern, P. Berger, and H. Hügel, “Magneto-Fluid Dynamic Control of Seam Quality in CO2 Laser Beam Welding,” Welding Journal, Welding Research Supplement, vol. 79, no. 3, pp. 72-s, 2000.
    8. M. Kern, P. Berger, and H. Hügel, “Using magnetofluiddynamic effects in order to influence the weld quality in the case of CO2 laser-beam welding,” Welding & cutting (Schweißen & Schneiden Translation), no. 3, p. E42, 2000.
    9. R. Mästle, A. Giesen, and H. Hügel, “Genormte Messverfahren zur Laserstrahlcharakterisierung,” LaserOpto, vol. 3, no. 32, p. 44, 2000.
    10. H.-J. Obramski, R. Mästle, A. Giesen, and H. Hügel, “Optische Mess- und Regelkomponenten für die hochdynamische Führung und Formung von CO2-Laserstrahlen,” LaserOpto, vol. 3, no. 32, p. 36, 2000.
    11. R. Paschotta et al., “Diode-pumped passively mode-locked lasers with high average power,” Applied Physics B, vol. 70 Sup., p. 25, 2000.
    12. C. Schinzel, B. Hohenberger, F. Dausinger, and H. Hügel, “Laserstrahlschweißen von Aluminiumkarosserien - der Weg vom Labor zur Praxis,” WT Werkstatttechnik, vol. 90, no. 1/2, 2000.
    13. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 4, p. 650, 2000.
  21. 1999

    1. T. Abeln, A. Raiber, F. Dausinger, and H. Hügel, “Laser - Micro - Caving (LMC) - a tool for high precision ablation of steel,” Manufacturing Systems, vol. 28, no. 1, p. 95, 1999.
    2. B. Angstenberger and F. Dausinger, “Laser-Plasma-Beschichtung von Diamant,” Journal für Oberflächentechnik, vol. 39, no. 11, p. II, 1999.
    3. L. C. Bartelt-Berger et al., “Monomode-fasergekoppeltes Halbleitersystem für den Direkteinsatz,” LaserOpto, vol. 31, no. 1, p. 58, 1999.
    4. M. Brandner, G. Seibold, M. Haag, F. Dausinger, and H. Hügel, “Effektive Umsetzung der spezifischen Strahleigenschaften von Hochleistungsdiodenlasern (HLDL) zur Materialbearbeitung,” LaserOpto, vol. 31, no. 1, p. 71, 1999.
    5. D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hügel, “Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths,” Applied Physics, no. A 69 Suppl, p. 505, 1999.
    6. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hügel, “Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser,” Quantum Electronics, vol. 29, no. 8, p. 697, 1999.
    7. F. Dausinger, T. Abeln, D. Breitling, J. Radtke, V. Konov, and A. Et, “Bohren keramischer Werkstoffe mit Kurzpuls-Festkörperlasern,” LaserOpto, vol. 31, no. 3, p. 78, 1999.
    8. A. Giesen et al., “Der Scheibenlaser mit neuem Pumpdesign: Erste Ergebnisse,” LaserOpto, vol. 31, no. 1, p. 36, 1999.
    9. C. Hönninger et al., “Ultrafast ytterbium doped bulk laser and laser amplifier,” Applied Physics B, vol. 69, no. 1, p. 3, 1999.
    10. K. Jasper et al., “Excimer laser beam homogenizer with low divergence,” Applied Physics, no. A 69 Suppl, p. 319, 1999.
    11. K. Jasper, P. Berger, and H. Hügel, “Strahlführung und -formung zur Effizienzsteigerung bei der Excimerlaser-Materialbearbeitung,” LaserOpto, vol. 31. Jahrgang, no. 4, p. 75, 1999.
    12. A. Strauch, P. Berger, and H. Hügel, “Gasdynamische Komponenten in der Lasermaterialbearbeitung,” Laser Magazin, Neues aus den Laserzentren, no. 6, p. 14, 1999.
  22. 1998

    1. G. Callies, H. Schittenhelm, P. Berger, and H. Hügel, “Modeling of the expansion of laser-evapourated matter in argon, helium and nitrogen and the condensation of clusters,” Applied Surface Science, vol. 127, p. 131, 1998.
    2. G. Callies, H. Schittenhelm, P. Berger, and H. Hügel, “Modeling of cluster generation in excimer laser induced plasma/vapour plumes,” (EUROMECH Colloqium 363, Mechanics of Laser Ablation, 23.-26. June 1997). Thermo, vol. 5, no. 2, p. 235, 1998.
    3. H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, and P. Berger, “Structuring with excimer lasers-experimental and theoretical investigations on quality and efficiency,” Journal of Laser Applications, vol. 10, no. 6, p. 255, 1998.
    4. V. I. Konov et al., “CO2-laser induced plasma CVD synthesis of diamond,” Applied Physics A, vol. 66, p. 575, 1998.
    5. G. P. Pinho, H. Schittenhelm, W. W. Duley, S. A. Schlueter, H. R. Jahani, and R. E. Mueller, “Energy distributions in the laser ablation of metals and polymers,” Applied Surface Science, vol. 127, p. 983, 1998.
    6. W. Plass, “Normgerechte Zerstörschwellenmessungen an CO2-Laseroptiken,” Laser und Optoelektronik, vol. 30, p. 48, 1998.
    7. H. Schittenhelm, A. Straub, G. Callies, P. Berger, and H. Hügel, “Measurement of wavelength-dependent transmission in excimer laser-induced plasma plumes and their Interpretation,” Journal of Physics D: Applied Physics, vol. 31, p. 418, 1998.
    8. H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Experimental investigations of the excimer laser induced interaction zone in terms of interaction mechanisms,” (EUROMECH Colloqium 363, Mechanics of Laser Ablation, 23.-26. June 1997). Thermo, vol. 5, no. 2, p. 255, 1998.
    9. H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Two-wavelenght interferometry on excimer laser induced vapour/plasma plumes during the laser pulse,” Applied Surface Science, vol. 127, p. 922, 1998.
  23. 1997

    1. A. Bachhofer, J. Rapp, C. Schinzel, C. Heimerdinger, and H. Hügel, “Laserstrahlschweißen von Aluminiumlegierungen unter reaktiver Schutzgasatmosphäre,” Teil I: Energieeinkopplung und Prozeßstabilität. Aluminium, vol. 73, no. 11, p. 790, 1997.
    2. B. Hohenberger, C. Schinzel, F. Dausinger, and H. Hügel, “Laserstrahlschweißen von Aluminiumwerkstoffen,” WT Werkstatttechnik, vol. 87, no. 6, p. 289, 1997.
    3. G. Hollemann, R. Koch, G. Hergenhan, A. Giesen, A. Voß, and M. Karszewski, “Effiziente diodengepumpte Scheibenlaser mit nahezu beugungsbegrenzter Strahlung,” Laser und Optoelektronik, vol. 29, p. 76, 1997.
    4. M. Huonker, H. Kindler, and A. Giesen, “Messung der dynamischen Genauigkeit eines Industrieroboters,” F&M (Carl Hanser Verlag), vol. 105, p. 460, 1997.
    5. C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode pumped thin disk Yb:YAG regenerative amplifier,” Applied Physics B, vol. 65, p. 423, 1997.
    6. H. Hügel, “Laser - Universalgerät oder Spezialwerkzeug,” WT Werkstatttechnik, vol. 87, no. 6, p. 281, 1997.
    7. C. Kunz, D. Rantzau, J. Sigel, J. Eschl, and B. Keller, “Der SFB 374 stellt sich vor,” Rechenzentrum der Universität Stuttgart, BI, no. 1/2, p. 8, 1997.
    8. W. Plass, R. Mästle, K. Wittig, A. Voß, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Optics Communications, vol. 134, p. 21, 1997.
    9. H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Time-resolved interferometric investigations of the KrF-laser-induced interaction zone,” Applied Surface Science, vol. 109, p. 493, 1997.
  24. 1996

    1. M. Beck, M. Kern, P. Berger, and H. Hügel, “Einfluß der Plasmawolke auf Einkopplung und Prozeßstabilität beim Lasertiefschweißen mit CO2-Lasern,” Laser und Optoelektronik, vol. 28, no. 8, p. 72, 1996.
    2. W. Bloehs, B. Grünenwald, F. Dausinger, and H. Hügel, “Recent Progress in Laser Surface Treatment - II. Adopted processing for high efficiency and quality,” Journal of Laser Applications, vol. 8, no. 2, p. 65, 1996.
    3. W. Bloehs, B. Grünenwald, F. Dausinger, and H. Hügel, “Recent Progress in Laser Surface Treatment -I: Implications of Laser Wavelength,” Journal of Laser Applications, vol. 8, no. 1, p. 15, 1996.
    4. F. Dausinger, J. Rapp, M. Beck, F. Faisst, R. Hack, and H. Hügel, “Welding of aluminium:a challenging opportunity for laser technology,” Journal of Laser Applications, vol. 8, no. 6, p. 285, 1996.
    5. B. Grünenwald, M. Brandner, R. Heigl, F. Dausinger, and H. Hügel, “Beschichten mit CO2- und Nd:YAG-Hochleistungslasern,” Härterei-Technische-Mitteilungen, vol. 51, no. 4, 1996, p. 238, 1996.
    6. M. Haag, H. Hügel, C. E. Albright, and S. Ramasamy, “CO2 laser light absorption characteristics of metal powders,” Journal of Applied Physics, vol. 79, no. 8, p. 3835, 1996.
    7. M. Kern, P. Berger, and H. Hügel, “Optimiertes Querjetkonzept zur effizienten Spritzerablenkung und gesicherten Schutzgaszufuhr beim Laserschweißen,” Laser und Optoelektronik, vol. 28, no. 8, p. 62, 1996.
    8. H. Kindler, R. Volz, and M. Huonker, “Das ’Beam Trap’-Modul - eine Revolution des Laserstrahlbeschichtens,” DVS-Berichte, vol. 175, p. 422, 1996.
    9. A. Raiber, F. Dausinger, and H. Hügel, “Laserbearbeitung in der Mikrotechnik - Potentiale formgebender Verfahren,” WT Produktion und Management, vol. 86, p. 574, 1996.
    10. H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Investigations of extinction coefficients during excimer laser ablation and their interpretation in terms of Rayleigh scattering,” Journal of Physics D: Applied Physics, vol. 29, p. 1564, 1996.
    11. T. Schuster, H. Kuhn, A. Raiber, T. Abeln, and A. Et, “High-precision cutting of high-temperature superconductors,” Applied Physics Letters, vol. 68, no. 18, p. 2568, 1996.
  25. 1995

    1. M. Beck, P. Berger, and H. Hügel, “The effect of plasma formation on beam focusing in deep penetration welding with CO2 lasers,” Journal of Physics D: Applied Physics, vol. 28, p. 2430, 1995.
    2. M. Beck and W. Bloehs, “Computer-aided optimiziation of laser hardening in a turning machine,” Manufacturing Systems, vol. 24, p. 1, 1995.
    3. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voß, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 nm and 1053 nm,” Optics Letters, vol. 20, no. 7, p. 713, 1995.
    4. G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” Journal of Physics D: Applied Physics, vol. 28, no. 4, p. 794, 1995.
    5. G. Callies, P. Berger, and H. Hügel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” Journal of Physics D: Applied Physics, vol. 28, p. 794, 1995.
    6. F. Dausinger, “Laser-Materialbearbeitung kostengünstiger durch Steigerung des Einkoppelgrads,” Laser und Optoelektronik, vol. 27, no. 2, p. 54, 1995.
    7. F. Dausinger, F. Faisst, C. Glumann, R. Hack, and R. Iffländer, “Effiziente Strahladdition zum Laserschweißen,” Laser und Optoelektronik, vol. 27, no. 4, p. 45, 1995.
    8. F. Dausinger, C. Glumann, H. Hügel, and J. Rapp, “Der Laser: Innovatives Schweißwerkzeug im Aluminium-Leichtbau,” Trumpf Express, no. Mai, p. 10, 1995.
    9. C. Hönninger, F. X. Kärtner, G. Zhang, U. Keller, and A. Giesen, “Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Optics Letters, vol. 20, no. 23, p. 2402, 1995.
    10. H. Hügel, “Effects of laser specific properties on deep welding,” Lasers in Engineering, vol. 4, p. 201, 1995.
    11. H. Hügel, M. Wiedmaier, and T. Rudlaff, “Laser processing integrated into machine tools - design, applications, economy,” Optical and Quantum electronics, vol. 27, p. 1149, 1995.
    12. H. Hügel, “Potential of modern CO2-lasers for industrial applications,” Infrared Phys. Technol., vol. 36, no. 1, p. 145, 1995.
    13. W. Krepulat, H. Hügel, and P. Berger, “Aerofenster für industrielle Hochleistungslaser,” Laser und Optoelektronik, vol. 27, no. 6, p. 37, 1995.
    14. J. Rapp, C. Glumann, F. Dausinger, and H. Hügel, “Laser welding of aluminium-light-weight materials:problems, applications and readiness for application,” Optical and Quantum Electronics, vol. 27, p. 1203, 1995.
  26. 1994

    1. M. Bea, A. Giesen, and H. Hügel, “Gezielte Steuerung der Fokusgeometrie durch gekoppelte adaptive Systeme,” Laser und Optoelektronik, vol. 26, no. 2, p. 43, 1994.
    2. S. Borik, “Einfluß optischer Komponenten auf die Fokussierbarkeit,” Laser und Optoelektronik, vol. 26, no. 2, p. 58, 1994.
    3. S. Borik and K. Wittig, “Zur Bedeutung des Strahlparameterproduktes für Hochleistungslaser,” Laser und Optoelektronik, vol. 26, no. 2, p. 50, 1994.
    4. A. Giesen, H. Hügel, A. Voß, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state-lasers,” Applied Physics B, vol. 58, p. 365, 1994.
    5. B. Grünenwald, S. Nowotny, W. Hennig, and F. Dausinger, “Waagengeregelter Pulverförderer für das einstufige Laserbeschichten,” Messtechniche Briefe, vol. 30, no. 2, p. 37, 1994.
    6. A. Voß, W. Plass, and A. Giesen, “Simple high-precision method for measuring the specular reflectance of optical components,” Applied Optics, vol. 33, p. 8370, 1994.
    7. M. Wiedmaier, E. Meiners, F. Dausinger, and H. Hügel, “Integrierter Lasereinsatz erweitert Komplettbearbeitung in Drehzentren,” VDI-Z, vol. 136, no. 4, p. 78, 1994.
    8. K. Wittig, A. Giesen, and H. Hügel, “An algebraic approach to characterize paraxial optical systems,” Applied Optics, vol. 33, p. 3837, 1994.
  27. 1993

    1. J. Arnold, G. Müller, H. Schneider, H. K. Müller, and H. Hügel, “Herstellung von Mikrostrukturen in SiC-Gleitringdichtungen mit dem Excimerlaser,” Laser und Optoelektronik, vol. 25, no. 6, p. 66, 1993.
    2. W. Bloehs, T. Rudlaff, and F. Dausinger, “Flexible Anpassung der Intensitätsverteilung beim Laserstrahlhärten unterschiedlicher Bauteilgeometrien,” Härterei-Technische-Mitteilungen, vol. 48, p. 13, 1993.
    3. F. Dausinger and J. Shen, “Energy coupling efficiency in laser surface treatment,” ISIJ International, vol. 33, p. 925, 1993.
    4. F. Dausinger, “Einkopplung beim Schneiden mit Lasern unterschiedlicher Wellenlänge,” Laser und Optoelektronik, vol. 25, no. 2, p. 47, 1993.
    5. G. Eberl et al., “Laser-Spanen eine neue Technologie zum Abtragen,” Laser und Optoelektronik, vol. 25, no. 3, p. 80, 1993.
    6. R. Hack, F. Faisst, E. Meiners, F. Dausinger, and H. Hügel, “Schneiden mit fasergeführtem Nd:YAG-Hochleistungslaser - Festkörperlaser dringt in Bereiche des CO2-Lasers vor,” Laser und Optoelektronik, vol. 25, no. 2, p. 62, 1993.
    7. S. Nowotny, B. Grünenwald, W. Hennig, and F. Dausinger, “Geregelte Pulverzufuhr für die Laser-Oberflächenbearbeitung mit Zusatzwerkstoffen,” Laser und Optoelektronik, vol. 25, no. 6, p. 71, 1993.
    8. T. Rudlaff and H. Hügel, “Laser in der Fertigungstechnik,” Dima/Die Maschine, vol. 47, no. 5, p. 16, 1993.
  28. 1992

    1. F. Dausinger and H. Hügel, “Nutzungspotentiale von Lasern in der Blechverarbeitung,” Bänder, Bleche, Rohre, vol. 7, p. 47, 1992.
    2. B. Grünenwald, E. Bischoff, J. Shen, and F. Dausinger, “Laser surface alloying of case hardening steel with tungsten carbide and carbon,” Materials Science and Technology, vol. 8, p. 637, 1992.
    3. H. Hügel, “Laserschweißen und -schneiden von Blechen,” Maschinenbau, vol. 21, no. 1, p. 34, 1992.
    4. F. Keilmann, R. Hack, and F. Dausinger, “Polarisation gives lasers a new cutting edge,” Opto & Laser Europe, vol. 1, p. 20, 1992.
    5. M. Wiedmaier and H. Hügel, “Festkörperlaser in eine Drehmaschine integriert,” Handelsblatt, vol. 83, no. 18, p. 46, 1992.
  29. 1991

    1. S. Ariely, J. Shen, M. Bamberger, F. Dausinger, and H. Hügel, “Laser surface alloying of steel with TiC,” Surface and Coatings Technology, vol. 45, p. 403, 1991.
    2. F. Dausinger and T. Rudlaff, “Maßnahmen zum Steigern der Effizienz beim partiellen Laserhärten,” Maschinenmarkt, vol. 97, no. 12, p. 84, 1991.
    3. F. Dausinger, T. Rudlaff, and J. Shen, “Einkopplung von CO-Laserstrahlen,” Laser und Optoelektronik, vol. 23, no. 1, p. 43, 1991.
    4. R. Edler and P. Berger, “Vorstellung eines neuen Düsenkonzeptes zum Lasertrennen,” Laser und Optoelektronik, vol. 23, no. 5, p. 54, 1991.
    5. S. Nowotny, J. Shen, and F. Dausinger, “Verschleißschutz durch Auftragschweißen von Stellit 21 mit CO2-Laser,” Laser und Optoelektronik, vol. 23, no. 6, p. 50, 1991.
    6. T. Rudlaff, F. Dausinger, R. Satani, H. Kanazawa, and N. Yamaguchi, “Oberflächenumwandlungshärten mit CO-Laser,” Laser und Optoelektronik, vol. 23, no. 1, p. 46, 1991.
    7. J. Shen, F. Dausinger, B. Grünenwald, and S. Nowotny, “Möglichkeiten zur Optimierung der Randschichteigenschaften eines Einsatzstahls mit CO2-Lasern,” Laser und Optoelektronik, vol. 23, no. 6, p. 41, 1991.
  30. 1990

    1. M. Bea and W. Hennig, “Vier für acht,” Automobil Produktion, no. 6, p. 80, 1990.
    2. M. Bea and W. Hennig, “Laserstrahlen aus der Steckdose,” Technische Rundschau, vol. 82, no. 34, p. 46, 1990.
    3. M. Bea and D. Fritz, “Laserstrahl auf neuen Wegen,” Produktion, vol. 18, p. 3, 1990.
    4. F. Dausinger, M. Beck, J. H. Lee, E. Meiners, T. Rudlaff, and J. Shen, “Energy Coupling in Surface Treatment Processes,” Journal of Laser Applications, vol. 2, p. 17, 1990.
    5. F. Dausinger and T. Rudlaff, “Maßnahmen zum Steigern der Effizienz beim partiellen Laserhärten,” Maschinenmarkt, vol. 96, no. 41, p. 124, 1990.
    6. H. Hügel and H. Klingel, “Schneiden von Blechen mit Laserstrahl - Optimale Resultate dank guter Laserprozeßbeherrschung,” Technische Rundschau, vol. 82, no. 34, p. 36, 1990.
    7. U. Schreiner-Mohr, F. Dausinger, and M. Wiedmaier, “Trennen mit CO2-Hochleistungslasern - Einsatz instabiler Resonatoren,” Laser und Optoelektronik, vol. 22, no. 6, p. 51, 1990.
  31. 1989

    1. M. Bea, S. Borik, and A. Giesen, “Untersuchung der transienten Eigenschaften optischer Komponenten und deren Korrektur durch adaptive Optiken,” Laser und Optoelektronik, vol. 21, no. 4, p. 60, 1989.
    2. M. Beck, F. Dausinger, and H. Hügel, “Studie zur Energieeinkopplung beim Tiefschweißen mit Laserstrahlung,” Laser und Optoelektronik, vol. 21, no. 3, p. 80, 1989.
    3. E. Wildermuth, P. Berger, and H. Hügel, “Aerodynamische Fenster für CO2-Hochleistungslaser,” Laser und Optoelektronik, vol. 21, no. 4, p. 67, 1989.
  32. 1988

    1. F. Dausinger and T. Rudlaff, “Härten mit Hochleistunglasern,” Opto Elektronik Magazin, vol. 4, no. 4, p. 378, 1988.
    2. A. Giesen, S. Borik, and U. Schreiner, “Einfluß der Optik auf den Bearbeitungsprozess,” Opto electronic magazin, vol. 4, no. 1, p. 54, 1988.
    3. H. Hügel, “CO2 - Hochleistungslaser,” Laser und Optoelektronik, vol. 20, no. 2, p. 68, 1988.
    4. T. Rudlaff and F. Dausinger, “Verschleißschutz mit Licht - partielles Härten mit CO2-Lasern,” Technische Rundschau, vol. 37, p. 44, 1988.
  33. 1987

    1. F. Keilmann, A. Giesen, T. Wahl, and S. Borik, “Charakterisierung von CO2 - Laserstrahlen durch PLexiglaseinbrand,” Laser Magazin, no. 4, p. 42, 1987.
  34. 1986

    1. E. Schmidt and P. Berger, “Inverse design of supercritical nozzles and cascades,” International Journal for Numerical Methods in Engineering, vol. 22, p. 417, 1986.

Konferenzbeiträge

  1. 2019

    1. C. Hagenlocher, A. Leis, F. Fetzer, D. Weller, R. Weber, and T. Graf, “Application of an analytical model to predict the grain structure of laser beam welds in aluminum alloys,” in Proceedings of LIM 2019, 2019.
    2. M. Jarwitz, J. Lind, R. Weber, and T. Graf, “Influence of superimposed intensity distributions on the welding process and the spatter behavior during laser welding of steel,” in Proceedings of the Lasers in Manufacturing Conference 2019, München, 2019.
    3. M. Sawannia, P. Berger, M. Jarwitz, R. Weber, and T. Graf, “Determination of the 3D-Geometry of Cutting Fronts with High Temporal Resolution,” in Proceedings of the Lasers in Manufacturing Conference 2019, München, Bayern, Deutschland, 2019.
  2. 2018

    1. T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. Abdou Ahmed, and T. Graf, “Passive compensation of beam misalignment caused by air convection in thin-disk lasers,” in CLEO 2018 © OSA 2018 - Science and Innovations, 2018, vol. Science and Innovations, no. SM1N.4.pdf.
    2. S. Faas, R. Weber, and T. Graf, “Heat accumulation controlled surface functionalization of stainless steel with structuring rates up to 500 mm2/s,” in Procedia CIRP, 2018, vol. 74, pp. 324--327.
    3. F. Fetzer, H. Hu, P. Berger, R. Weber, and T. Graf, “Pores in laser beam welding: generation mechanism and impact on the melt flow,” in High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VII, 2018.
    4. F. Fetzer, H. Hu, P. Berger, R. Weber, and T. Graf, “Pores in laser beam welding: generation mechanism and impact on the melt flow,” in High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VII, San Francisco, California, United States, 2018, vol. 10525.
    5. D. Holder, S. Boley, M. Buser, R. Weber, and T. Graf, “In-process determination of fiber orientation for layer accurate laser ablation of CFRP,” in Procedia CIRP, 2018, vol. 74, pp. 557--561.
    6. M. Jarwitz, J. Lind, R. Weber, T. Graf, N. Speker, and P. Haug, “INVESTIGATION OF THE INFLUENCE OF SUPERIMPOSED INTENSITY DISTRIBUTIONS ON THE SPATTER BEHAVIOR IN LASER WELDING OF STEEL USING ONLINE X-RAY DIAGNOSTICS,” in Proceedings of the 37th International Congress on Applications of Lasers & Electro-Optics (ICALEO 2018), Orlando, Florida, USA, 2018.
    7. C. Röhrer, C. Codemard, G. Kleem, M. A. Ahmed, and T. Graf, “Preservation of Good Beam Quality over Several Hundred Meters in Highly Multimode Fibers,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), Zurich, Switzerland, 2018, p. SoW4H.2.
    8. C. Röhrer, F. Gérôme, B. Debord, M. Abdou Ahmed, T. Graf, and F. Benabid, “Polarization maintaining behavior of hollow-core fibers,” presented at the SLT, Stuttgart Laser Technology Forum, Stuttgart, Germany, 2018.
    9. M. Sawannia, P. Berger, M. Jarwitz, R. Weber, and T. Graf, “Thermal Emission-Based Geometry Determination of Hot Surfaces Generated During Laser Material Processing,” presented at the 37th International Congress on Applications of Lasers & Electro-Optics, Orlando, Florida, United States, 2018.
  3. 2017

    1. U. Brauch et al., “Schemes for efficient quantum-well pumping of AlGaInP disk lasers,” in SPIE Proceedings, 2017, p. 1008703.
    2. U. Brauch et al., “Schemes for efficient quantum-well pumping of AlGaInP disk lasers,” in SPIE Proceedings, 2017, p. 1008703.
    3. B. Dannecker et al., “Thin-disk multipass amplifier delivering 10 GW of peak power,” in CLEO/Europe-EQEC 2017, 2017, p. CF--5.3.
    4. T. Dietrich et al., “Large-area pulse compression gratings with high efficiency and high damage threshold,” in EOS Topical meeting on Diffractive Optics, 2017.
    5. T. Dietrich et al., “Highly-efficient grating waveguide mirror enabling kW-class intra-cavity frequency-doubled thin-disk laser,” in Topical meeting on Diffractive Optics, 2017.
    6. T. Dietrich et al., “CW thin-disk laser emitting kW-class beams with radial polarization,” in CLEO/Europe-EQEC 2017, 2017, p. CA--2.1.
    7. T. Dietrich et al., “A 1.1 kW CW intra-cavity frequency-doubled thin-disk laser,” in Advanced Solid State Lasers 2017, Nagoya, Aichi Japan, 2017, vol. OSA Laser Congress 2017 (ASSL,LAC) © OSA 2017, pp. ATu6A--1.
    8. T. Dietrich et al., “CW thin-disk laser emitting kW-class beams with radial polarization,” in CLEO/Europe-EQEC 2017, 2017, p. CA--2.1.
    9. F. Fetzer, H. Haoyue, R. Weber, and T. Graf, “Experimental and numerical investigation of the capillary front and side walls during laser beam welding,” presented at the Lasers in Manufacturing Conference 2017, Munich, 2017.
    10. F. Fetzer, M. Boley, R. Weber, and T. Graf, “Comprehensive analysis of the capillary depth in deep penetration laser welding,” in High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VI, 2017, vol. 10097, p. 1009709.
    11. C. Freitag, M. Wiedenmann, R. Weber, and T. Graf, “STRATEGIEN ZUR SCHÄDIGUNGSARMEN LASERBEARBEITUNG VON CFK,” presented at the 25. Stuttgarter Kunststoffkolloquium, Stuttgart, 2017.
    12. C. Freitag, S. Faas, S. Boley, P. Berger, R. Weber, and T. Graf, “Determination of the flow speed of the evaporated material generated during laser processing of CFRP with a cw-laser by means of high-speed imaging,” presented at the Lasers in Manufacturing Conference 2017, Munich, 2017.
    13. D. J. Förster, R. Weber, and T. Graf, “Heat accumulation effects on efficiency during laser drilling of metals,” 2017.
    14. D. J. Förster, R. Weber, and T. Graf, “Heat accumulation effects on efficiency during laser drilling of metals,” 2017.
    15. D. J. Förster, R. Weber, and T. Graf, “Residual heat during ultrashort laser drilling of metals,” in Proceedings of LPM2017 - the 18th International Symposium on Laser Precision Microfabrication, 2017.
    16. D. J. Förster, R. Weber, and T. Graf, “Residual heat during ultrashort laser drilling of metals,” in Proceedings of LPM2017 - the 18th International Symposium on Laser Precision Microfabrication, 2017.
    17. C. Hagenlocher, J. Nolte, R. Weber, and T. Graf, “Strain behavior during the initiation process of centerline cracks in laser welding of aluminum alloys,” in Proc. of LIM 2017, 2017.
    18. C. Hagenlocher, J. Nolte, R. Weber, and T. Graf, “Strain behavior during the initiation process of centerline cracks in laser welding of aluminum alloys,” in Proc. of LIM 2017, 2017.
    19. M. Jarwitz, F. Fetzer, R. Weber, and T. Graf, “Low electrical resistance of aluminum to copper joints achieved with temporal and spatial laser beam modulation,” in Lasers in Manufacturing Conference 2017, Munich, Germany, 2017.
    20. M. Jarwitz, F. Fetzer, R. Weber, and T. Graf, “SPATIAL BEAM MODULATION TO REDUCE ELECTRICAL RESISTANCE IN LASER WELDED ALUMINUM TO COPPER DISSIMILAR JOINTS,” in Proceedings of the 36th International Congress on Applications of Lasers & Electro-Optics (ICALEO 2017), Atlanta, Georgia, USA, 2017.
    21. H. Kahle et al., “The optically pumped semiconductor membrane external-cavity surface-emitting laser (MECSEL): a concept based on a diamond-sandwiched active region,” in SPIE Proceedings, 2017, p. 100870J.
    22. H. Kahle et al., “The optically pumped semiconductor membrane external-cavity surface-emitting laser (MECSEL): a concept based on a diamond-sandwiched active region,” in SPIE Proceedings, 2017, p. 100870J.
    23. S. Piehler, T. Dietrich, P. Wittmüss, M. A. Ahmed, O. Sawodny, and T. Graf, “Intra-cavity compensation of wavefront distortions in kW-level thindisk lasers,” in The European Conference on Lasers and Electro-Optics, 2017, p. CA\_7\_5.
    24. S. Piehler, T. Dietrich, P. Wittmüss, M. A. Ahmed, O. Sawodny, and T. Graf, “Intra-cavity compensation of wavefront distortions in kW-level thindisk lasers,” in The European Conference on Lasers and Electro-Optics, 2017, p. CA\_7\_5.
    25. C. Pruss et al., “High power polarization shaping utilizing sub-lambda-grating structures,” in EOS Topical meeting on Diffractive Optics, 2017.
    26. C. Pruss et al., “High power polarization shaping utilizing sub-lambda-grating structures,” in EOS Topical meeting on Diffractive Optics, 2017.
    27. C. Röhrer, G. Kleem, M. A. Ahmed, and T. Graf, “Limits of propagation of the fundamental mode in multimode fibers,” in Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017 Conference on), 2017, pp. 1--1.
    28. C. Röhrer, F. Gérôme, B. Debord, M. A. Ahmed, T. Graf, and F. Benabid, “Analysis of polarization maintaining behavior in inhibited coupling hollowcore photonic crystal fibers (IC HC-PCF),” in The European Conference on Lasers and Electro-Optics, 2017, p. CI\_P\_5.
    29. P. Tatar-Mathes et al., “Improved gain chip holder design for high efficient, high power AlGaInP-VECSEL,” in SPIE Proceedings, 2017, p. 100870R.
    30. P. Tatar-Mathes et al., “Improved gain chip holder design for high efficient, high power AlGaInP-VECSEL,” in SPIE Proceedings, 2017, p. 100870R.
    31. D. Weller, F. Fetzer, R. Weber, and T. Graf, “Modelling of temperature-controlled laser joining of aluminum and galvanized steel,” in Lasers in Manufacturing Conference 2017, Munich, Germany, 2017.
    32. J.-H. Wolter, M. A. Ahmed, and T. Graf, “Power-scaling of a Ti: sapphire thin-disk oscillator,” in CLEO/Europe-EQEC 2017, 2017, p. CA\_7\_6.
  4. 2016

    1. B. Dannecker, M. A. Ahmed, and T. Graf, “A 1.78 µJ and 285fs Yb:CaF2 SESAM-modelocked thin-disk oscillator,” in Laser Sources and Applications III, 2016, vol. 9893, p. 98930P.
    2. B. Dannecker, M. Abdou Ahmed, and T. Graf, “SESAM modelocked Yb:CaF2 thin disk laser delivering 285 fs pulses with peak power of 5.5 MW,” in 7th EPS-QEOD EUROPHOTON CONFERENCE  "Solid State, Fibre, and Waveguide Coherent Light Sources"  , 2016, vol. 7, p. SSL-5.1.
    3. T. Dietrich, M. Rumpel, T. Graf, and M. Abdou Ahmed, “Efficient generation of cylindrically polarized beams in an Yb:YAG thin-disk laser enabled by a ring-shaped pumping distribution,” in Proc. SPIE 9893, Laser Sources and Applications III, 2016, vol. 98930M (27 April 2016).
    4. S. Faas, C. Sciancalepore, R. Weber, L. Romoli, and T. Graf, “Surface structuring with a 500 W picosecond laser,” 2016.
    5. C. Hagenlocher, P. Stritt, H. Friebe, C. Blumenthal, R. Weber, and T. Graf, “Space and time resolved determination of thermomechanical deformation adjacent to the solidification zone during hot crack formation in laser welding.,” in proceedings of icaleo 2016, 2016.
    6. C. Hagenlocher, P. Stritt, H. Friebe, C. Blumenthal, R. Weber, and T. Graf, “Space and time resolved determination of thermomechanical deformation adjacent to the solidification zone during hot crack formation in laser welding.,” in proceedings of icaleo 2016, 2016.
    7. H. Hu, P. Eberhard, F. Fetzer, and P. Berger, “Towards multiphysics simulation of deep penetration laser welding using smoothed particle hydrodynamics,” in VII European Congress on Computational Methods in Applied Sciences and Engineering - Eccomas Proceedia, Crete Island, Greece, 2016, vol. 2405, pp. 8196–8206.
    8. R.-A. Lorbeer, S. Karg, L. Pastuschka, D. J. Förster, S. Scharring, and H.-A. Eckel, “Thrust Noise Minimization in Long-term Laser Ablation of Propellant Material in the Nanosecond and Picosecond Regime,” 2016.
  5. 2015

    1. T. Dietrich, S. Piehler, M. Rumpel, T. Graf, and M. Abdou Ahmed, “High-power and high-efficiency frequency-doubled fundamental-mode thin-disk laser,” in OSA Technical Digest (online) (Optical Society of America, 2015), 2015, no. paper AF1A.4.
    2. T. Dietrich, S. Piehler, M. Rumpel, T. Graf, and M. Abdou Ahmed, “Highly efficient grating mirror enables high-power fundamental-mode thin-disk laser emitting in the green by SHG,” in The European Conference on Lasers and Electro-Optics, Munich, Germany, 2015.
    3. T. Dietrich, S. Piehler, M. Rumpel, T. Graf, and M. Abdou Ahmed, “Highly efficient grating mirror enables high-power fundamental-mode thin-disk laser emitting in the green by SHG,” in The European Conference on Lasers and Electro-Optics, Munich, Germany, 2015.
    4. D. J. Förster, D. A. Bui, V. Onuseit, R. Weber, and T. Graf, “Energy transfer mechanisms during laser pulsed processing of metals,” presented at the Lasers in Manufacturing Conference (LiM), Munich, Germany, 2015.
    5. D. J. Förster, D. A. Bui, V. Onuseit, R. Weber, and T. Graf, “Energy transfer mechanisms during laser pulsed processing of metals,” presented at the Lasers in Manufacturing Conference (LiM), Munich, Germany, 2015.
    6. D. J. Förster, A. L. Lucke, R. Weber, and T. Graf, “Femtosecond double pulse laser ablation of silicon,” 2015.
    7. D. J. Förster, A. L. Lucke, R. Weber, and T. Graf, “Femtosecond double pulse laser ablation of silicon,” 2015.
    8. G. Granger, C. Röhrer, G. Kleem, M. Abdou Ahmed, and T. Graf, “Generation of Supercontinuum LP0n Modes in Highly Multimode Gradient-Index Fiber,” in Advanced Solid State Lasers, 2015, p. ATu2A.36.
  6. 2014

    1. S. Dong, T. Haist, T. Dietrich, and W. Osten, “Hybrid curvature and modal wavefront sensor,” in Unconventional Imaging and Wavefront Sensing 2014, edited by Jean J. Dolne, Thomas J. Karr, Victor L. Gamiz, Proc. of SPIE, 2014, vol. 9227, no. 922702.
    2. S. Scharring, D. J. Förster, H.-A. Eckel, J. Roth, and M. Povarnitsyn, “Open Access Tools for the Simulation of Ultrashort-Pulse Laser Ablation,” in Conference-Proceedings-Teilnehmer-CD, 2014.
  7. 2005

    1. S.-S. Beyertt et al., “Semiconductor Thin-Disk Laser -- Comparison of Spacer and Quantum-Well Pumping,” in Advanced solid-state photonics, 2005, p. 294.
  8. 2002

    1. F. Dausinger, P. Berger, and H. Hügel, “Laser Welding of Aluminum Alloys: Problems, Approaches for Improvement and Applications,” in ICALEO 2002: 21st International Congress on Applications of Lasers & Electro Optics, Conference Proceeding, Laser Materials Processing Conference, Scottsdale, Arizona, USA, 2002.
    2. C. Föhl, D. Breitling, and F. Dausinger, “Influences on Hole Quality in High Precision Drilling of Steel with Ultra-short Pulsed Laser Systems,” in ICALEO 2002: 21st International Congress on Applications of Lasers & Electro Optics, Conference Proceeding, Laser Materials Processing Conference, Scottsdale, Arizona, USA, 2002.
    3. W. Gref, B. Hohenberger, F. Dausinger, and H. Hügel, “Energy Coupling and Process Efficiency in Double-Focus Welding with Nd:YAG,” in ICALEO 2002: 21st International Congress on Applications of Lasers & Electro Optics, Conference Proceeding, Laser Materials Processing Conference, Scottsdale, Arizona, USA, 2002.
  9. 1997

    1. V. I. Mazhukin, N. V. V., P. Berger, G. Callies, and S. Henrik, “Mathematical formulation and analysis of nonequilibrium heating of metals,” in 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Berlin, 1997, vol. 3: Computational physics, chemistry and biology, pp. 271–276.
    2. V. I. Mazhukin, V. V. Nosov, P. Berger, G. Callies, and H. Schittenhelm, “Mathematical formulation and analysis of nonequilibrium heating of metals,” in 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Berlin, 1997, vol. 3: Computational physics, chemistry and biology, pp. 271–276.
  10. 1991

    1. A. Holzwarth, J. Griebsch, and P. Berger, “Theoretical and experimental investigations on pressure-wave reflections and attenuation in high-power excimer lasers,” in Proc. SPIE 1503, Excimer Lasers and Applications III, The Hague, Netherlands, 1991, pp. 98 – 109.
Zum Seitenanfang