

WP 6 System Development

Enda McCague, Class 4 Laser (CH) David Bruneel, Lasea (BE)

Work Package 6

Objectives:

- 2 Demonstrator platforms, 3 end-users
- Define system interfaces
- Integrate laser and optics
- System operational in an industrial context
- Collect input from end-users, fiber developers, laser developers, process developers

Work Package 6

- HIPERDIAS application areas:
 - 3D Silicon processing
 - Fine cutting of metals
 - Diamond ablation
- Agenda:

Period 2

- Task 6.1 Definition of interfaces
- Task 6.2 Definition of laser & optics sizes; optics specifications (incl. fiber) M03-M15
 - Task 6.3 Development of the interfaces
- Task 6.4 System layout and build-up
 - Task 6.5 Integration of the laser and optics
- Task 6.6 Test and evaluation

Partners involved:

CLASS LASER See the light

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

M08-M22

M08-M36

M08-M24

M12-M42

Description of Work

• Task 6.1 Definition of interfaces

M03-M42

- (LASEA; AMP, C4L, BOSCH, E6)
- Analysis and development of interface requirements outlined in D1.4 (Definition of software – technical interface).
- **Continuous process,** developed over the course of WP6.
- Task 6.2 Definition of laser & optics sizes; optics specifications M03-M15
 - (USTUTT; AMP, C4L, LASEA, GLO)
 - Design of beam path.
 - **Continuous process,** developed over the course of WP6.
- Task 6.3 Development of interfaces
 - (C4L; LASEA)
 - $\ensuremath{\circ}$ Interfacing controls.

M08-M22

Description of Work

 Task 6.4 System layout and build-up 	M08-M36
(C4L; USTUTT, AMP, LASEA)	
 Build-up of machining system. Integration of all components relevant for machining system. 	
 Integration of all components relevant for machining system. 	
 Task 6.5 Integration of laser and optics 	M08-M24
(C4L; USTUTT, AMP, LASEA) O Integration of all components relevant for beam delivery.	
 Task 6.6 Test and evaluation 	M12-M42
(LASEA; USTUTT, AMP, C4L, BOSCH, E6)	
\circ Testing and validation of both systems.	
 Full characterisation of systems. 	

Work Package 6

System 1: 500 W

Application Area:3D Si AblationSystem developer:LASEAEnd-user:BOSCHLocation:IFSW, Stuttgart

System 2: 200W

Application Area:	Diamond processing, fine cutting metals
System developer:	Class 4 Laser
End-user:	Element Six, Class 4 Laser
Location:	Class 4 Laser, Lyss (Switzerland)

System 2

- Target industries:
- Materials:

Synthetic diamonds, Watch industry Metals: Brass, Steel, Silicon Polycrystalline diamond

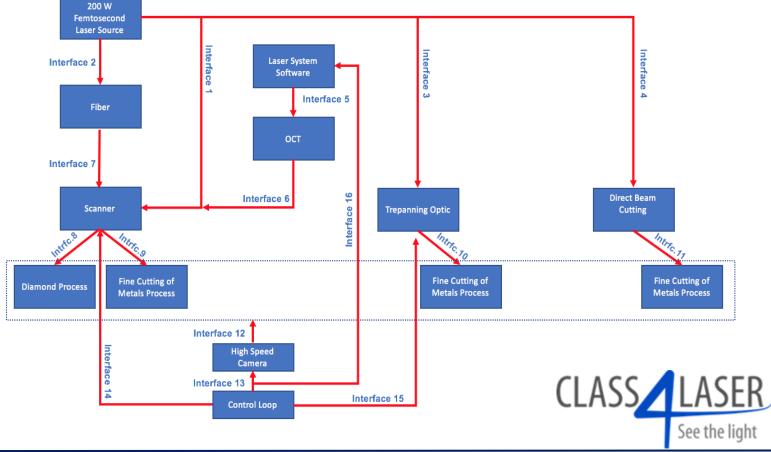
• End- Users:

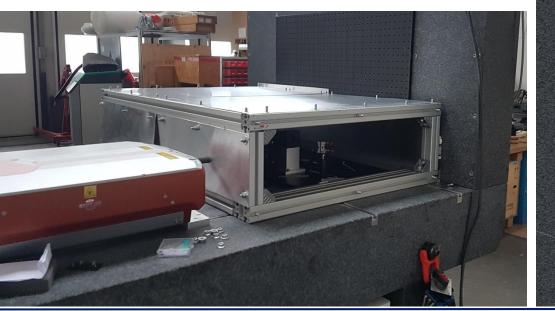
Element Six (Ire) Class 4 Laser (CH)

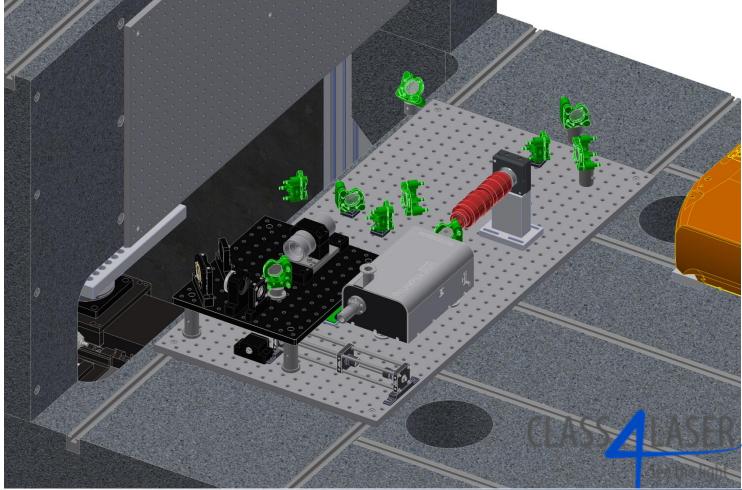
System 2

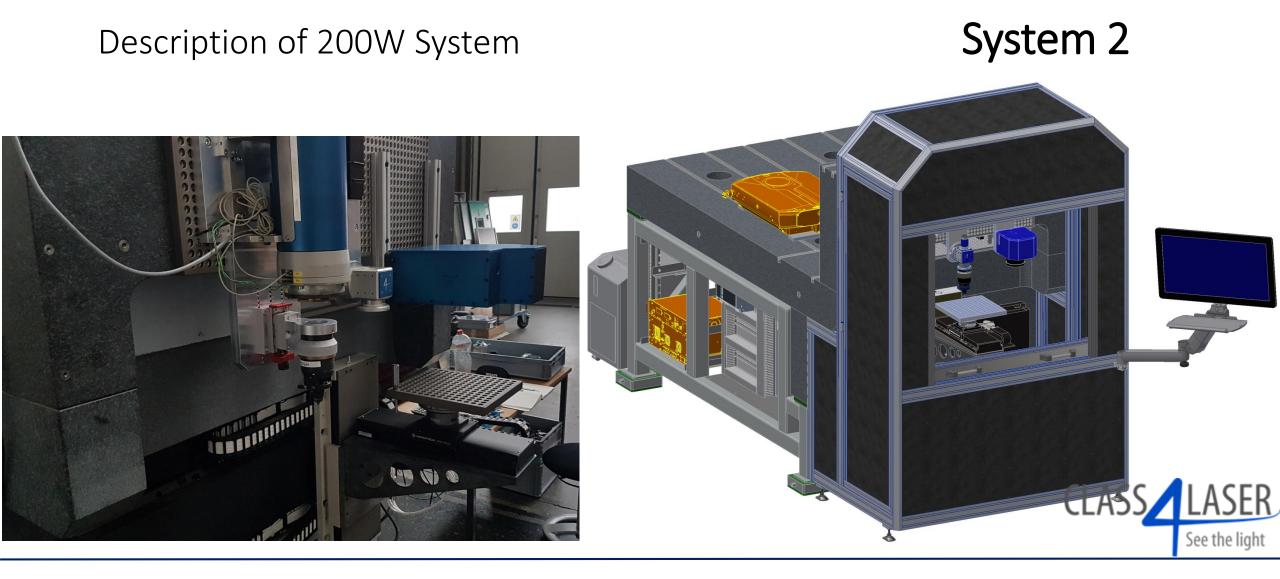
Description of 200W System

- Circular polarized beam
- TEM 00
- Trepanning optic (for cutting)
- C4L cutting head (gas assisted cutting)
- Galvanometer scanner (Intelliscan 14, Scanlab)
- 7.6 160 μ m spot diameter (for fine cutting and diamond polishing)
- 167 mm, 32mm focal length objectives
- OCT based Closed loop Vision System & topography (2 step diamond polishing)
- Deliverable 6.2 Submitted M15




- Electrical, optical, mechanical, human interfaces defined
- Deliverable 6.1 submitted M 12





This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 687880

CONFIDENTIAL

Working heads :	Cutting head (C4L design)
	Trepanning optic
Vision System :	C4L Starfighter

- Trepanning limited to 300RPM, Manual alignment
- Gas assisted cutting up to 20bar
- Software options
- OCT X, Y resolution <10 μm, 70kHz scan rate

System 2

Axes & mounting: 3 Axis Aerotech system Erowa Mounting plate

- X, Y; max speed 2000 mm.s⁻¹, Z: 250mm.s⁻¹ Overall repeatability <1 μm
- Mounting plate: repeatability 1µm
- Gas assisted cutting up to 20bar
- Software options

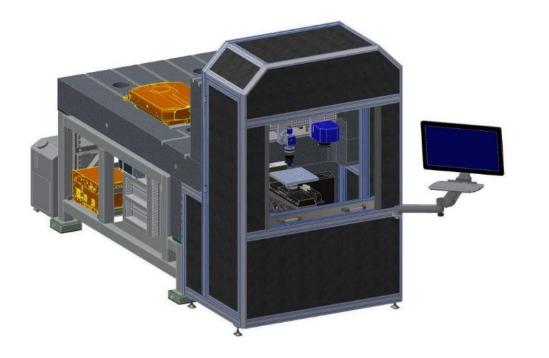
- Remaining work
 - Integration of X-Ray shielding
 - Integration of system housing
 - Optimisation of work stations (mainly trepanning)

/

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

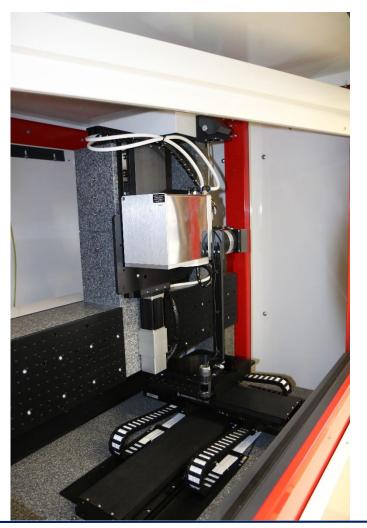
Desc	cription of 200	OW Syst	tem Sys t	tem 2	<	85 mm	>
Bear	n deflection:		scan 14 scan _{de} 20i				
- 3 4	xis system	167т - х - ү - z	9 M 85 mm 85 mm 64 mm	32mm 2.3 mm 2.3 mm 64 mm	2.3 mm <->		
Lens	ОСТ	(870nm)	Max spot si	ze* Min spo	ot size*		
32mm	Com	patible	160µm	40µm			
167m * Enabl	m Com ed by beam expansion; 1-4	patible 4x	30µm	7.6µm		CLASS	LASER See the light

- Beam delivery optics defined and integrated
- Work station optics integrated; Cutting head, Galvo-Scanner
- Installation of laser
- Remaining work
 - Functional integration of laser
 - Alignment of trepanning optic
 - Alignment of OCT
 - Alignment of focus adjustment (Varioscan, Scanlab)
 - Integration of Fiber delivery
 - Interfacing of Laser directly with axes
 - Integration of X-Ray shielding
 - Integration of system housing
 - Optimisation of work stations (mainly trepanning)


See the light

Task	M23	M24	M25	M26	M27	M28	M29	M30	M31	M32	M33	M34
	(Delivered											
Granite	M15)											
	(Delivered				April							
Axes	M13)				(End)							
									August			
Scanner									(Mid)			
												Vovember
OCT Vision System											<u>(</u> B	eginning)
Housing & Shielding										Octo	ober (Mid)	
									Se	ptember		
Beam Deflection									50	(End)		
Varioscan										(1.1.0)		
integration										Oct	ober (Mid)	
Laser Delivery and									August	000		
Installation								(R	eginning)			
mstanation									cymnig/		October	
Laser Integration										(1	Beginning)	
											/cgiiiiiig/	
Fiber Integration												November
Fiber Integration											I	vovember
											CLASS	
											-	6 I. I

System 2: "200 W Machine"



System 1: 500 W Machine installed at IFSW

Description of the 500W system

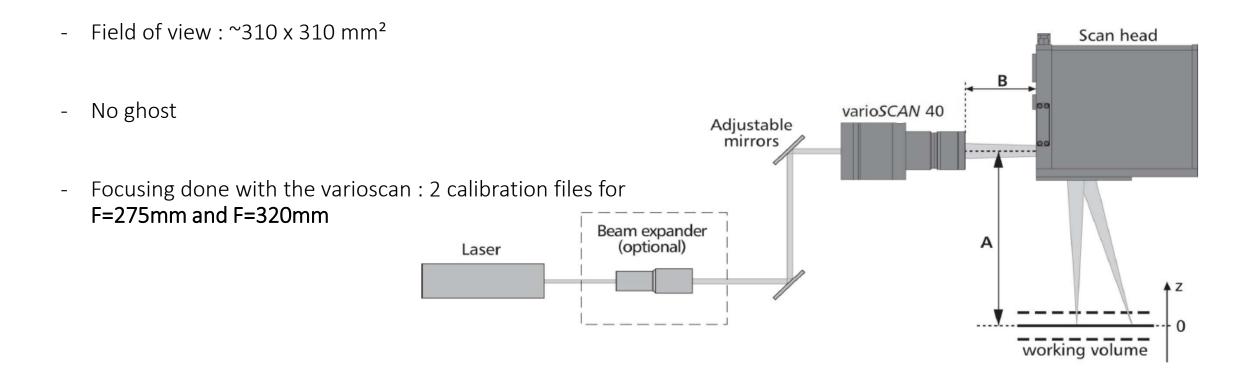
- Components in the machine:
 - <u>Deflecting unit</u>: Scanlab Intelliscan 30 + Varioscan40i (focusing before scanner)
 - <u>Autoalignment system</u>: TEM-MESSTECHNIK Aligna
 - <u>Beam expander</u>: low magnification (x2, X4) because of the size of the beam
 - <u>Safety enclosure</u>: made of steel, 1.5mm thick, to protect from eventual X-rays generation
 - <u>Spatial beam shaping</u> : phase blade to make a top-hat shaped spot at focus (first time use, to be tested)
 - <u>Fiber connection</u>: will replace the last mirror before the focusing

Description of the 500W system

• <u>Deflecting unit :</u>

Focal length (mm)) Max speed (m/s) Beam diame (mm)		Expected spot size (μm)
		5	87
275	9	10	45
		15	30
		5	100
320	13	10	50
			34
			135
400 (lens)	20	10	65
		15	45

Not recommended, risk of damaging mirrors by back reflections


 \rightarrow May be possible to get a third calibration file from scanlab for a longer focal length

Description of the 500W system

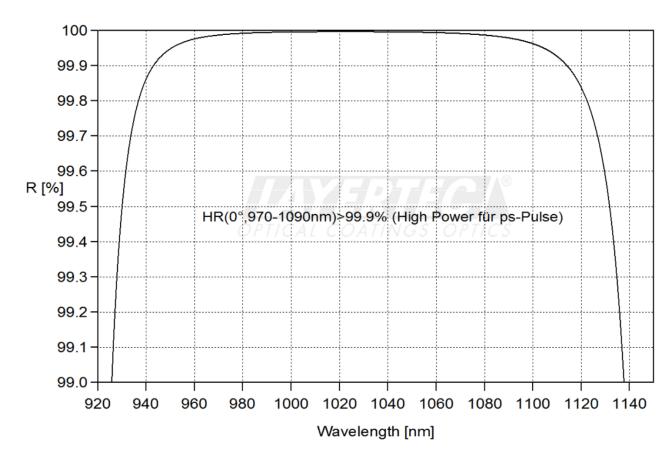
• <u>Deflecting unit</u>: Scanlab Head intelliscan 30*de* + varioscan 40i

Description of the 500W system

Deflecting unit : •

	Max power density (W/cm²)	Damage Threshold (J/cm ²)	Max average power (W)	
Intelliscan 30	1000	5	2000	
Varioscan 40	NA	NA	1000	
		Highe	est Input beam pea	<u>mated</u> LIDT for 300 fs : 27 mJ/cn ak fluence for 5 mm beam, 1mJ at be experimentally higher)

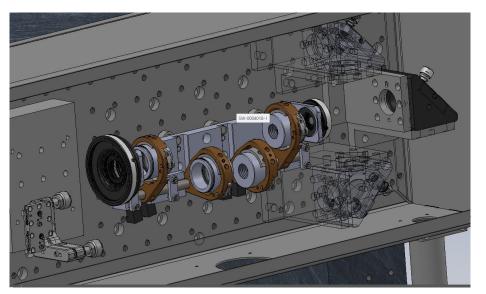
→ **Theoretically** below the lowest threshold damage



Description of the 500W system

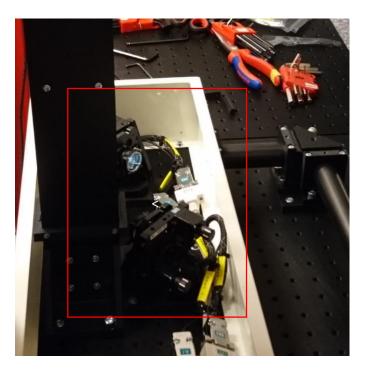
- <u>Mirrors:</u>
 - Reflectivity > 99.9 %
 - LIDT (calculated for 400 fs) : 400 mJ/cm²
 (Might be experimentally higher)

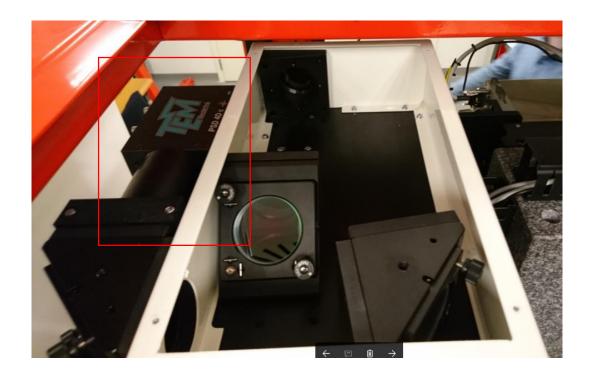
Calculated Peak laser fluence
 4mm beam, 1mJ → : 15 mJ/cm²



Description of the 500W system

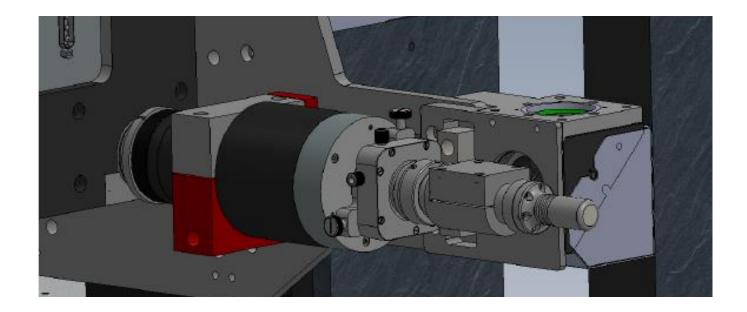
- <u>Beam expander :</u>
 - Integrated in the CAD
 - Currently being mounted in the machine
 - 5 possible magnifications : x1 x4


	Lenses							
MAGNIFICATIONS	L1 (-50 mm)	L2 (-100 mm)	L4 (200 mm)					
x 1								
x 1,5		X	X					
x 2		X		X				
x 3	X		X					
x 4	X			X				



Description of the 500W system

- <u>Autoalignment :</u>
 - WARNING : maximum 10mW on the sensor !



Description of the 500W system

- <u>Fiber connection</u>:
 - Integrated in the CAD
 - Integrated in the machine

WP 6 – Overview

Task	Title	Status	Deliverable	Due Date	System 1 Status	System 2 Status
6.1	Definition of Interfaces	Finished	D6.1	M12	\checkmark	\checkmark
6.2	Definition of laser & optics specs.	Finished	D6.2	M15	\checkmark	✓
6.3	Development of Interfaces	Finished				
6.4	System Layout and build-up	On-Going	D6.3	M17	\checkmark	\checkmark
			D6.5	M36	On Going	On Going
6.5	Integration of Laser and Optics	On-Going	D6.4	M24	On Going	On Going
6.6	Test and Validation	On- Going	D6.6	M42	On Going	On Going

WP 6 – Milestones

Milestone	Due Date	System 1 Status	System 2 Status
MS30 Scanning unit and trepanning optic integrates	M24	NA	✓
MS31 Assessment of the 500W laser system design	M24	NA	\checkmark
MS32 Assessment of the 200W laser system design	M24	\checkmark	NA
MS37 Laser Integrated	M28	\checkmark	\checkmark
MS42 System Evaluated	M36	\checkmark	On going
MS44 Full characterisation of the performance of the 500W laser system for 3D-Si processing	M42	On going	NA
MS45 Full characterisation of the performance of the 200W laser system for fine cutting metals and diamond processing	M42	NA	On going
M46 Full characterisation of the performance of the 1000W laser system for the fine cutting metals and diamond processing	M42	Not yet started	NA

WP6 System Development

Thank you