

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP5 Thin-disk Multi-pass Booster

Marwan Abdou Ahmed University of Stuttgart (USTUTT), IFSW

Work Package 5 Overview

- Main objective: Building multipass amplifier with Seed Source from AMP
 - Task 5.1 Design of the thin-disk multipass amplifier (USTUTT, completed in P1)
 - Task 5.2 Amplifier with 500 W, 1 MHz, sub-500 fs (USTUTT, AMP, Due M22, completed)
 - Task 5.3 Second and third harmonic generation (USTUTT, AMP, Due M28, *"completed" in P2*)
 - Task 5.4 Integration of Yb amplifier (AMP, USTUTT, Due M28, completed in P2)
 - Task 5.5 Demonstration of a 1 kW, sub-1ps laser system (USTUTT, AMP, Due M38, ongoing)

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

HOTONICS PUBLIC PRIVATE PARTNERSHIP

WP5 – Task 5.2: Assembly and characterization of a Yb:YAG thin-disk multipass amplifier (USTUTT, AMP, Due M22)

- Here: no modulation, 0th order dumped at exit of seed
- 50 W Seed Power, 330 fs pulses, 1280 kHz
- Measured output power in singlepass: 605 W (deliverable: 500 W)
- Maximum pulse energy (1280 kHz): 473 μJ
- No picking implemented in this measurement

- 330 fs pulse duration of seed laser
- Measured pulse duration at 600 W power: 393 fs
- Peak Power: 1.1 GW

Slight spectral narrowing → very slight temporal broadening

- Beam profile at full output power: only slight aberations visible
- M²<1.3

- Thanks to very good thermomechanical properties system is very stable after thermalization
- Measurement starting around 500 W
- No power drops observed

HOTONICS PUBLIC PRIVATE PARTNERSHIP

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Task 5.3 Frequency Conversion (USTUTT, AMP, completed) beam dump HWP TFP vex 5m cav 8m Comp M60-6 M40-4 G1-Module AOM M20-2: Satsuma HP3 Pump diodes (969 nm) RMP Array of mirrors Conversion Box Active beam stabilisation ::≈⊙ 2=0 power head / beam dump

Task 5.3 Frequency Conversion (USTUTT, AMP, completed): SHG

• LBO 10x10x(1.5/1.0) mm Type I (oo-e) cut: $\vartheta = 90^{\circ}$, $\varphi = 13.2^{\circ}$, $T = 37^{\circ}C$

from Cristal Laser (France)

Task 5.3 Frequency Conversion (USTUTT, AMP, completed): SHG (LBO -1.5 mm)

• M²<1.2 at 240 W

- 52% of conversion efficiency
- Pulse duration ~ 313 fs

OTONICS PUBLIC PRIVATE PARTNEI

Task 5.3 Frequency Conversion (USTUTT, AMP, completed): SHG (LBO -1.0 mm)

• M²<1.4at 281 W

- 54.5% of conversion efficiency
- Pulse duration ~ 313 fs at 276 W

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Task 5.3 Frequency Conversion (USTUTT, AMP, completed): SHG (LBO -1.0 mm)

• M²>1.8 at 320 W

• 59.4% of conversion efficiency

OTONICS PUBLIC PRIVATE PARTNEI

Task 5.3 Frequency Conversion (USTUTT, AMP, completed): THG

- Non-linear cyrstals
 - SHG: LBO 10x10x(1.5/1.0) mm Type I (oo-e) cut: $\vartheta = 90^{\circ}$, $\varphi = 13.2^{\circ}$, $T = 37^{\circ}C$
 - SFG: LBO 10x10x1 mm Type I (oo-e) cut $\vartheta = 90^\circ$, $\varphi = 40.1^\circ$, $T = 47^\circ C$
 - Both crystals were provided by Cristal laser (France)

Task 5.3 Frequency Conversion (USTUTT, AMP, completed): THG / setups Setup for temporal walk-off compensation (I)

OTONICS PUBLIC PRIVATE PARTNERSHIP

Task 5.3 Frequency Conversion (USTUTT, AMP, completed): THG / physical implementation of

Setup I

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 687880

Task 5.3 Frequency Conversion (USTUTT, AMP, completed): THG / physical implementation of Setup I

HOTONICS PUBLIC PRIVATE PARTNER

Task 5.3 Frequency Conversion (USTUTT, AMP, completed): THG / results (setup I)

- 52 W @ 343 nm, corresponding to 14.1 % total conversion efficiency (IR->UV)
- Limited by damages of dichroic filters after SFG stage
 - Only IR Power up to 380 W out of the >500 W could be used
- 18 W: M² < 1.3
- 52 W: M² < 2.2
- Beam quality degradation due to thermally induced aberrations in SFG crystal

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Task 5.4 Integration of TD-MPA (USTUTT, AMP, completed)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 687880

CONFIDENTIAL

OTONICS PUBLIC PRIVATE PARTNERSHIP

Physical implementation in application labs

OTONICS PUBLIC PRIVATE PARTNERSHIP

Physical implementation in application labs

OTONICS PUBLIC PRIVATE PARTNERSHIP

Physical implementation in application labs

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 687880

Laser experiments in application lab

- Seed power: 50 W (1 Order), 59 W (0 Order)
- M² < 1.3 at 514 W, 1.28 MHz repetition rate
- Extraction efficiency > 42%
- Pulse duration = 294 fs

Laser experiments in application lab

- Long term measurement
- Operation at ~528W
- $M^2 < 1.3$ before and after ~ 10 h operation
- RMS Power fluctuation: 1.1 W in a

120 min. time interval

• PV Power fluctuation: 17.6 W for a 120 min. time interval

Laser experiments in application lab: test of the burst mode

Task 5.5 Demonstration of a 1kW, sub-1ps TD-MPA(USTUTT, AMP, ongoing)

"200W/150W" to be installed on 09-11 October 2018!

- Will be used to seed the TD-MPA

WP5 - Deliverables

Deliverable title	Due date	Status
D5.1 Design of the multipass amplifier	M06 – July 2016	Approved
D5.2 Thin-disk multipass amplifier with 500 W, 1 MHz, sub-500 fs	M22- November 2017	Submitted M23-December
D5.3 Demonstration of 200W green and 100W UV laser beams at 1MHz and sub- 500 fs pulse	M28- May 2018	Submitted M30- June 2018
D5.4 Thin-disk multipass amplifier with 1000W, >=1MHz, sub-1ps	M38- March 2019	Not yet submitted, work ongoing

WP5 - Milestones

Milestone title	Due date	Status
MS24 Thin-disk multipass amplifier with 500 W, 1 MHz, sub-500 fs	M22	Achieved
MS36 Demonstration of 200W green and 100W UV laser beams at 1MHz and sub- 500 fs pulse	M28	"Achieved for the 200W green and partially achieved for the 100W UV
MS43 Thin-disk multipass amplifier with 1000W, >=1MHz, sub-1ps	M38	Not yet achieved