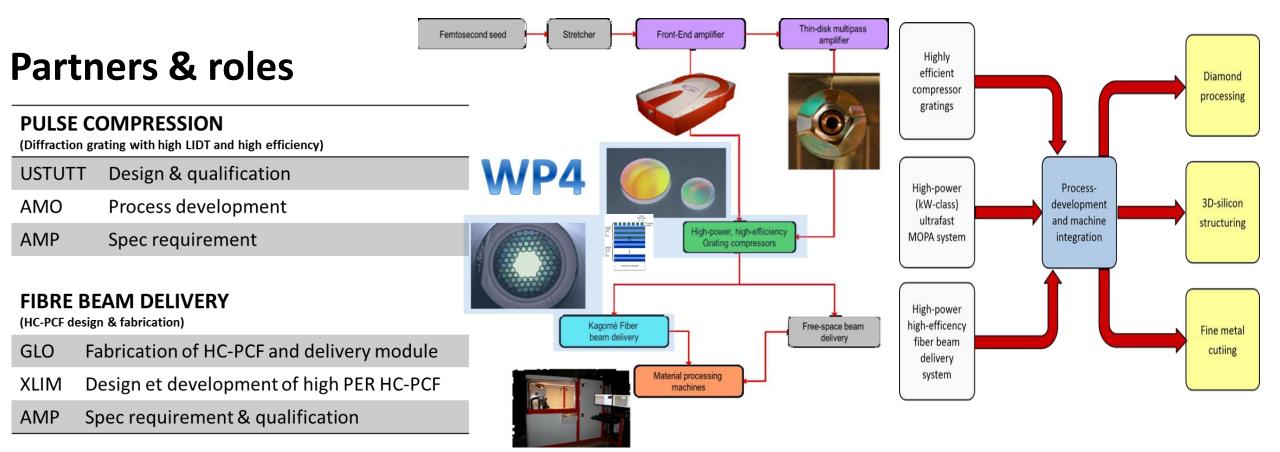


WP4 Photonics Components for pre- and post- pulse conditioning

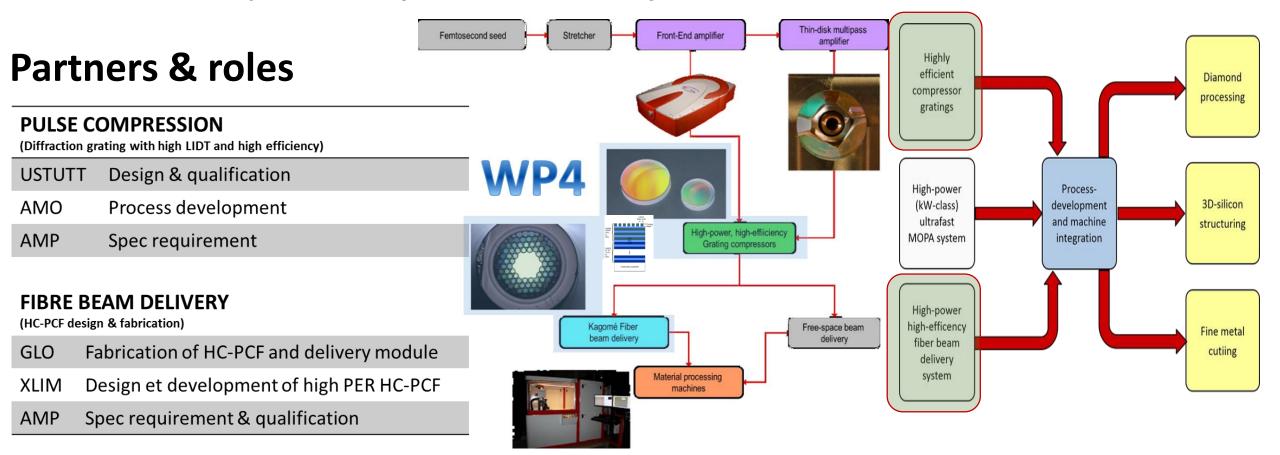
Fetah Benabid

GPPMM group, XLIM Research Institute, CNRS-Université de Limoges, UMR 7252, Limoges, France



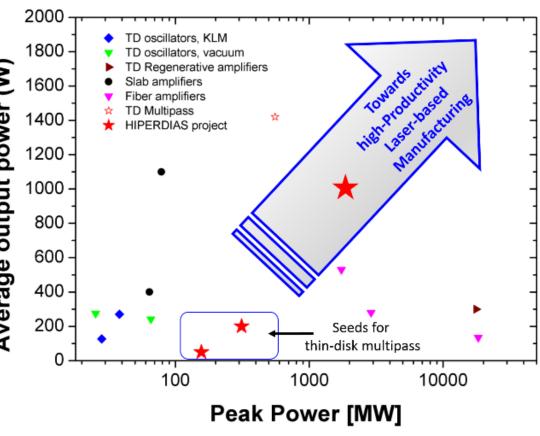
Work Package 4 Overview

AIM: Pulse compression & fibre beam-delivery



Work Package 4 Overview

AIM: Pulse compression & fibre beam-delivery



Work Package 4 Overview

AIM: Pulse compression & fibre beam-delivery

	Parameter	Current State-of-the-Art	HIPERDIAS Target	
	Average power/peak power	1.4 kW (lab)/ 588 MW	1 kW / >1 GW	_
Laser system	Energy	4.7 mJ	1 mJ @ 1 MHz	≥
	Pulse duration	8 ps	<1 ps	<
	Overall Efficiency (%)	80-85	> 96%	Wer
Grating compressors	Spectral bandwidth (nm)	~ 10	Several tens of nm (>99% efficiency)	power
	LIDT (@ 500 fs)	0.3 J/cm ²	>0.3 J/cm² (up to 1J/cm²)	ı
	Average power / Peak power	150W/2GW Note: peak power is not limiting factor in kagome fiber. Challenge is to handle larger avg power	>500W and up to 1kW />1 GW	outpu
Beam delivery	Propagation loss	20-50 dB/km (typical)	10-20 dB/km typical (down to 1 dB/km is aimed for	de
	PER	17 dB (typical in stationary configuration)	>20dB	era
	Fine metal cutting	mechanical	USP Laser	>
Material processing	3D silicon processing	mechanical	USP Laser	⋖
	Diamond ablation	mechanical	USP Laser	

TASK BREAKDOWN

Work Package 4 Overview

6 tasks, 14 Milestones & 7 delivrables

	PULSE COMPRE (Diffraction grating with high LIDT a				FIBRE BEAM DELIVER (HC-PCF design & fabrication)							
TASK /Leader	Description	Milestones	Deliverables	TASK /Leader	Description	Milestones						
4.1 /USTUTT	Design of grating compressor • Design of the gratings • Parameter space review	M4.1 (M03)	D4.1(M04) D 4.2(M12)	4.4/ GLO	Fabrication & characterization of PMC module for USP fibre-delivery	M 4.1 (M06) M 4.5 (M12,18,28						
4.2 /AMO	Development of optimized lithography process for the fabrication of pulse compression gratings			4.5/ GLO	Design and Fabrication of photonic microcell module with integrated coupling optics for fibre-delivery and interface with system	M4.7(M15) M4.9 (M18) M4.10(M24)						
4.3 /AMO	Development of optimized etching process for the fabrication of pulse compression gratings	M4.3(M08) M4.4(M12) M4.8(M18)	M05-M30 D 4.2	4.6/ XLIM	integrator. Design and Fabrication of high PER HC-PCF for ultrahigh energy pulse delivery	M 4.6 (M12) M4.11(M24)						

TASK /Leader	Description	Milestones	Deliverables
4.4/ GLO	Fabrication & characterization of PMC module for USP fibredelivery	M 4.1 (M06) M 4.5 (M12,18,28)	D4.4 (M24, M36) D4.7 (M30)
4.5/ GLO	Design and Fabrication of photonic microcell module with integrated coupling optics for fibre-delivery and interface with system integrator.	M4.7(M15) M4.9 (M18) M4.10(M24)	D4.6(M30)
4.6/ XLIM	Design and Fabrication of high PER HC-PCF for ultrahigh energy pulse delivery	M 4.6 (M12) M4.11(M24)	D4.5 (M24)

WP4 - Milestones

11 Milestones fulfilled as planed. 2 are ongoing

Milestone title	Task	Due date	Status
M4.1 First design, high efficient grating mirrors	T4.1	M03 – April 2016	Fulfilled
M4.2 PMC module for fiber beam delivery prototype #1	T4.4	M06 – July 2016	fulfilled
M4.3 1^{st} generation grating mirror on large area, rectangular substrates fabricated	T 4.3	M08 – September 2016	fulfilled
M4.4 Fully optical characterization of grating mirror regarding diffraction efficiency and LIDT	T4.3	M12 – January 2017	Fulfilled LIDT: carried out
M4.5 PMC module for fiber beam delivery prototype #2 PMC module for fiber beam delivery prototype #3 PMC module for fiber beam delivery prototype #4	T4.5	M12 – January 2017 M18-July2017, M28-May 2018	Fulfilled. Ongoing qualification by AMP & USTUTT
M4.6 Design of HC-PCF with improved PER at 1μm (>20 dB)	T4.6	M12 – January 2017	Fulfilled with ongoing characterization and improvement
M4.7 End-capping definition and process design	T4.5	M15 – April 2017	Fulfilled
M4.8 Demonstration of optimized grating mirrors, 99% DE	T4.3	M18 – July 2017	Fulfilled
M4.9 End-capped output PMC module for beam delivery	T4.5	M18-July 2017	Fulfilled
M4.10 Qualification of end-capped output PMC module for beam delivery	T4.5	M24-January 2018	Partial fulfillment
M4.11 Fabrication of HC-PCF with improved PER at 1 um (>20 dB)	T4.6	M24-January 2018	Fulfilled
M4.12 End-capped input PMC module for beam delivery	T4.5	M26-March 2018	Fulfilled

WP4 - Deliverables

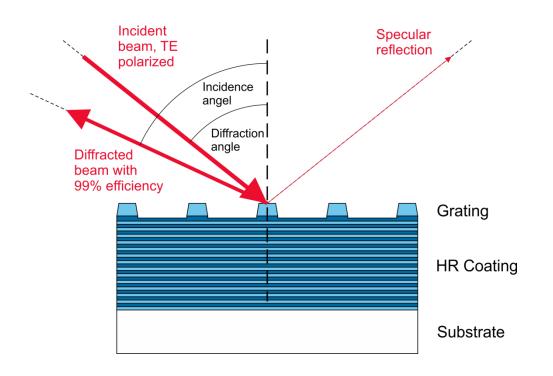
6 Delivrables achieved. 1 deliverable is ongoing

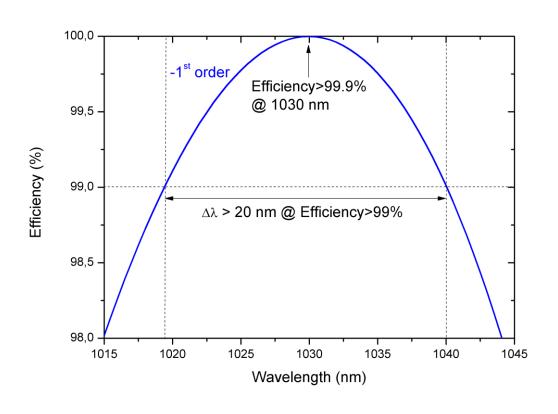
Deliverable title	Due date	Status
D4.1 Report on simulation of pulse compression gratings with diffraction efficiency $>=99\%$ over large spectral bandwidth (5 – 10 nm) around 1030 nm	M04 – May 2016	Delivered
D4.2 Report on first fabrication of pulse compression grating with 98% diffraction energy on large area, rectangular substrate material	M12 – January 2017	delivered
D4.3 Report on fabrication and optical characterization of optimized gratings with single-pass diffraction efficiency $>=99\%$ over large spectral bandwidth (5 $-$ 10 nm) around 1030 nm	M18 – July 2017	delivered
D4.4 (x2) Final version of PMC module for fiber beam delivery	M24-January 2018, M36-January 2019	Delivered
D4.5 End-capped PMC module for beam delivery	M24-January 2018	Delivered
D4.6 HC-PCF with improved PER at 1μm (>20 dB)	M30-July 2018	Delivered
D4.7 PMC module based on HC-PCF with improved PER at 1μm (>20 dB)	M30-July 2018	Partially delivered

WP4 – Task 4.1: Design of grating compressors

Targeted specifications:

Grating period	610 nm (1640l/mm)
Angle of incidence	51.4°
Separation angle	13.7°
Diffraction efficiency at 1030 nm	99.5%
Spectral bandwidth at efficiency >99%	5-10 nm
LIDT in fs-ps operation	>0.3 J/cm ²
Grating dimensions	75mmx50mm





WP4 – Task 4.1: Design of grating compressors

Design results:

WP4 – Task 4.1: Design of grating compressors

Design results:

	Targets	Obtained design results
Period	610 nm	610 nm
Angle of incidence	51.4°	51.4°
Separation angle	13.7°	13.7°
Diffraction efficiency at 1030 nm	99.5%	>99.9%
Spectral bandwidth at efficiency >99%	5-10 nm	>20 nm
LIDT in fs-ps operation	>0.3J/cm ²	0.3 -0.5 J/cm ²

WP4 – Task 4.2 Development of an optimization of a lithography process for the fabrication of pulse compression gratings

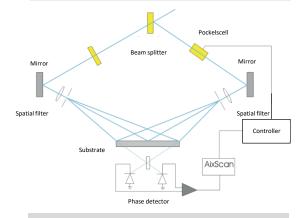
WP4 – Task 4.3: Development and optimization of an etching process for the fabrication of optical components

		₹	2	2	₹ !	€ €	W	9	22	¥ ;	¥ 5	MH3	¥.	MI5	MI 6	M17	₩	Ş.	ĕ	M22	No.	M25	M26	No.	M28	MG MG	
	WP4 - Photonic components for pre-and-post-pulse conditioning			M4.1		M4.2		M4.3			M 4.4 M 4.5		N.	и4.7 N	14.4 14.8						M4.1 M4.1	10 11					
T4.1	Design of grating compressors										M4.6		1	Į.	14.9												_
T4.2	Development of a lithography process for the fabrication of pulse compression gra	ting																								1000	
T4.3	Development of an etching process for the fabrication of optical components																										
T4.4	Fabrication and characterization of photonic microcell (PMC) module			r	14.1				-		D4.2		-		-	D4.3				-		1				-	T
T4.5	Design/Fabrication of photonic microcell module with integrated coupling optics													-							D4.4					D4.5	
T4.6	Design and Fabrication of polarization maintaining hollow-core photonic crystal													-							D4.6					D4.7	

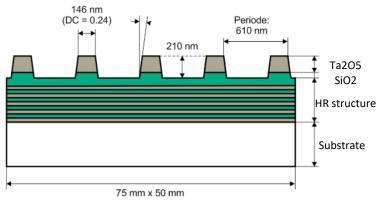
Overview: Main process steps in the fabrication sequence

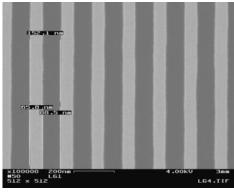
1.) Large area resist coating

Goal: uniform large area resist coating on 75mm x 50mm substrates

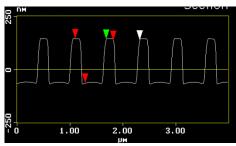

2.) Interference lithography

Benefit	Precise definition of large area periodic pattern
Parameter	Pitch: 610nm
Main challenges	Controll over DC


3.) Reactive Ion Etching (RIE)


Tool	Oxford Plasmalab 100 (ICP)
Chemistry	SF ₆ / C ₄ F ₈
Etching quality/ Target Specs	+ anisotropic etch profiles + smooth surfaces + 210nm etch depth

Interference lithography

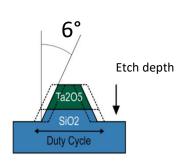


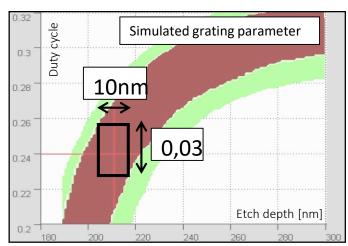
Reactive Ion Etching (RIE)

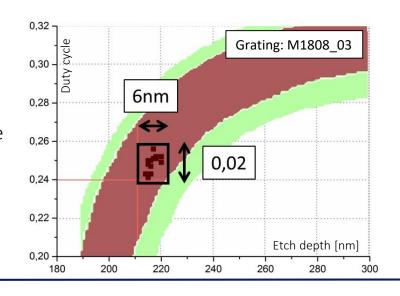
Grating pitch: $p = \frac{\lambda}{2\sin(\alpha)}$

AFM scan of etch grating

WP4 – Task 4.2 and Task 4.3

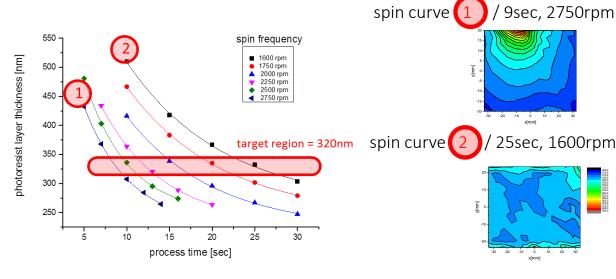

- Fabrication tolerances for the grating geometry according to task 4.1
- Target: Diffraction efficiency >= 99% over large spectral bandwidth
- Grating geometry:

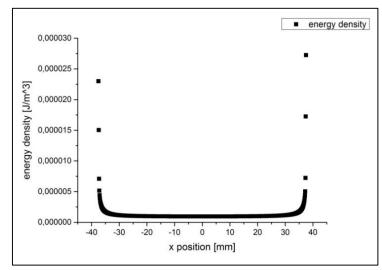

Duty cycle: 0.24 **+/- 0.015** for the duty cycle Etch dpeth: 210 nm **+/- 5 nm** for the etch depth


- Measured values for a single pulse compression grating
- Geometry measured with atomic force microscope and scanning electron beam microscope
- Measured at 15 points in a rectanglar with a size of 60 mm x 35 mm
- -> Deviations: 0.02 for duty cycle and 6 nm for the etch depth

Diffraction efficiency at 1030nm

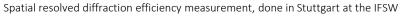
- > 99% red
- > 98% green

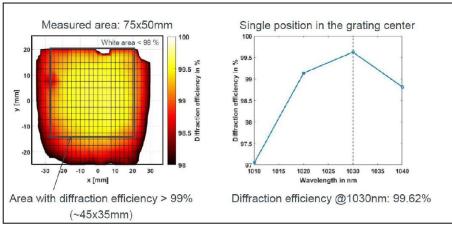


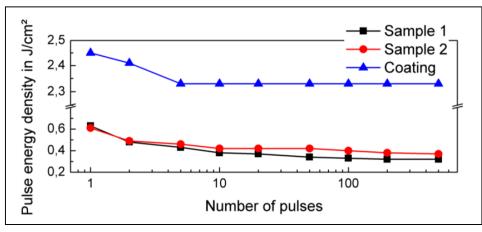


WP4 – Task 4.2 and 4.3

- Photoresist coating process development and optimization in terms of layer thickness and uniformity
- Post exposure bake (PEB) step, evaluation and modification of temperature and baking time
- Simulation of plasma energy distribution during RIE
- Compensation of the plasma edge-effect by adding dummies at the edges





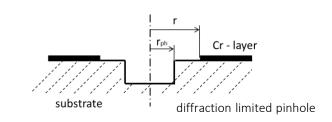

Results:

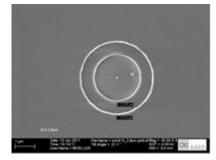
Pulse compression grating 75 mm x 50 mm

Laser Induce Damage Threshold (LIDT) measurements
Conducted at the Institute Fresnel in Collaboration with Dr. Gallais

- -> "Hot spot" with DE > 99% achieved on an area of $45 \text{mm} \times 35 \text{mm}$ -> $0.32 \text{ J/cm}^2 \text{ LIDT}$
- D4.3 Report on fabrication and optical characterization of optimized gratings with single-pass diffraction efficiency >=99% over large spectral bandwidth (5-10 nm) around 1030 nm
- MS20 Demonstration of optimized grating mirrors, 99% diffraction efficiency

✓ Fulfilled



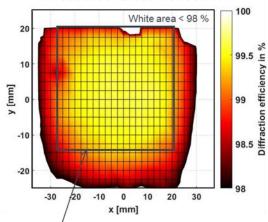

Outlook:

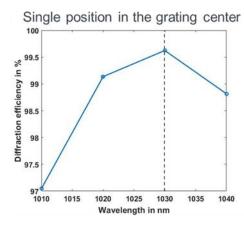
Potential for further improvement

- 1) Increasing the area of high diffraction efficiency by flattening the exposure field of the Interference Lithography system
- -> Development of a diffraction limited flat-top pinholes [1] enables better duty cycle uniformity

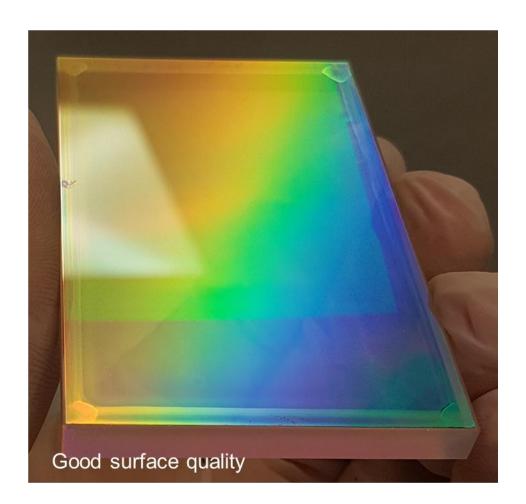
- 2) Improvement of the Laser Induce Damage Threshold (LIDT)
- -> Replacement of tantalum pentoxide by hafnium dioxide
 - -> Extending the tasks 4.2 and 4.3 from WP4 beyond M30

SEM picture diffraction limited pinhole


[1] Modifed pinhole spatial filter producing a clean flat-topped beam, P. Hariharan, Andal Narayanan, Optics & Laser Technology 36 (2004) 151 – 153

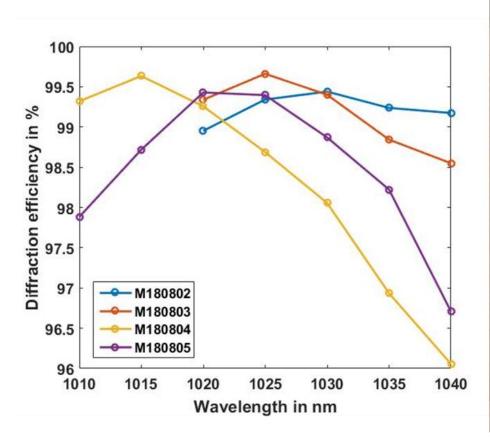


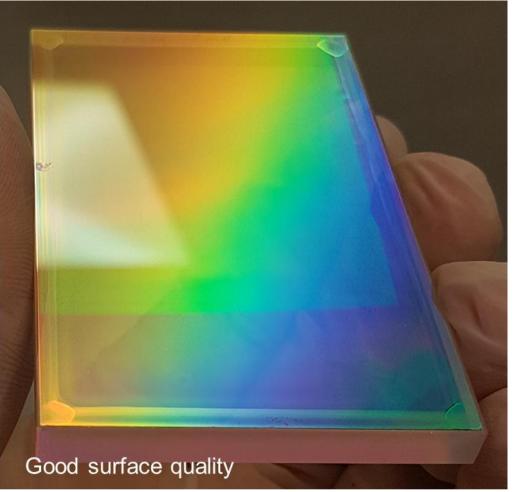
M290604


Measured area: 75x50mm

Area with diffraction efficiency > 99% (~45x35mm)

Diffraction efficiency @1030nm: 99.62%


13.07.2017


1

Second run of samples

WP4 – Task 4.4: Fabrication and characterization of photonic microcell (PMC) module for fiber-delivery of ultra-short high power pulse

Partners: GLO, XLIM, AMP

		₹	Ŋ	SS.	₹	€	9	¥ 94	2	ž	M 21	- N	M 4	M 5	MIG	MI7	D N	ξ.	N21	M22	M24	MZS	M26 M27	MZ8	MZ9	00 00 00 00
	WP4 - Photonic components for pre-and-post-pulse conditioning			M4.1		М	14.2	M4.3			M4 M4			M4.7	M4.6 M4.8						M4.10 M4.11					
T4.1	Design of grating compressors										M4.	5			M4.9											
T4.2	Development of a lithography process for the fabrication of pulse compression gra	atings				-						-								1						
T4.3	Development of an etching process for the fabrication of optical components					-						-								-						
T4.4	Fabrication and characterization of photonic microcell (PMC) module				04.1	-	-				D4.	2 }				D4	.3			3000			3			
T4.5	Design/Fabrication of photonic microcell module with integrated coupling optics											-								30000	D4.4		3000		D4	.5
T4.6	Design and Fabrication of polarization maintaining hollow-core photonic crystal											-								-	D4.6		-		D4	.7

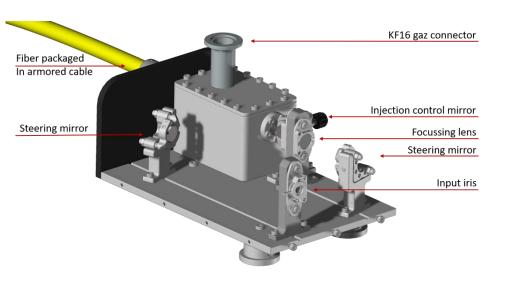
- Design review undertaken
- Prototype of α -prototype made
- Initial Characterization (USP Energy/duration handling, modal content)
- Prototypes #2,3 been achieved and sent to partner AMP (Fab. 2017)
- Protoype #4 sent for test.
- Deviations and proposed corrective actions...
 - NA

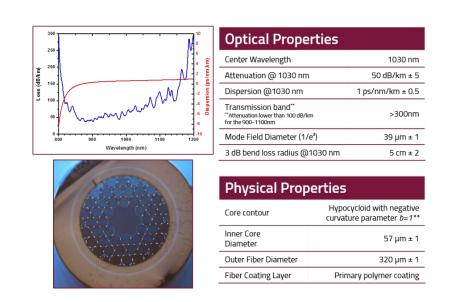
WP4 – Task 4.5: Design and fabrication of photonic microcell module with integrated coupling optics for fiber-delivery and interface with system integrator

• Partners: GLO, XLIM, AMP

	¥	2	8	₹ ₹	2 €	≥ 8	2	M 0	M12 M12	MI3	M 5	MIG	M17	M 9	<u>8</u>	Met	M23	MOS MOS	MZ6	M27	MZ9	M30
WP4 - Photonic components for pre-and-post-pulse conditioning			M4.1		M4.2	M4.	3		M4.4 M4.5		M4.7	M4.4 M4.8						M4.10 M4.11				
T4.1 Design of grating compressors									M4.6			M4.9										
T4.2 Development of a lithography process for the fabrication of pulse compression	grating	ţs																				
T4.3 Development of an etching process for the fabrication of optical components																						
T4.4 Fabrication and characterization of photonic microcell (PMC) module				D4.1					D4.2				D4.	3								
T4.5 Design/Fabrication of photonic microcell module with integrated coupling opt	cs										-							D4.4	-			D4.5
T4.6 Design and Fabrication of polarization maintaining hollow-core photonic crysta	I																	D4.6				D4.7

- Achievements...
 - End-termination design undertaken
 - End-user requirement definition ongoing
- Deviations and proposed corrective actions...
 - NA

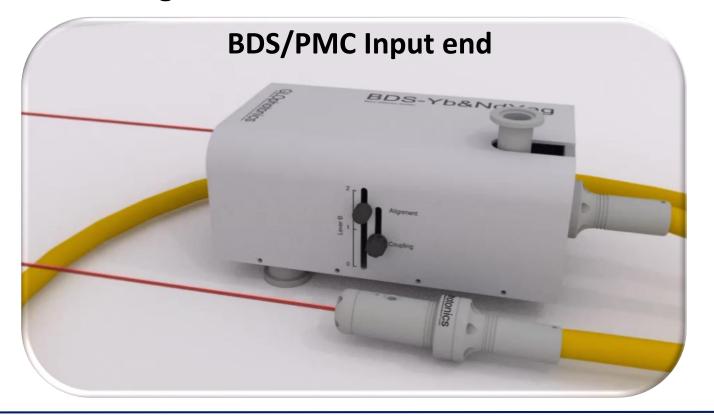


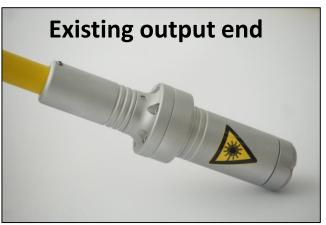


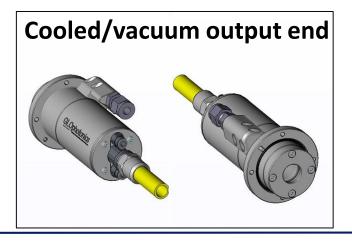
WP4 – Task 4.4: Fabrication and characterization of photonic microcell (PMC) module for fiber-delivery of ultra-short high power pulse

Design and fabrication

3D design of the 2nd PMC beam delivery system incoupling module (left) and specification of the integrated fiber (center) and optical micrograph of the first assembled prototype (right).

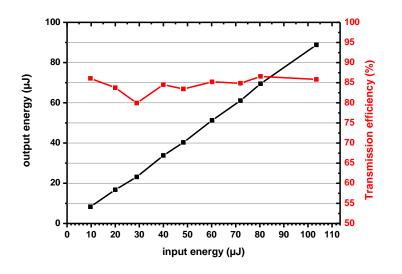


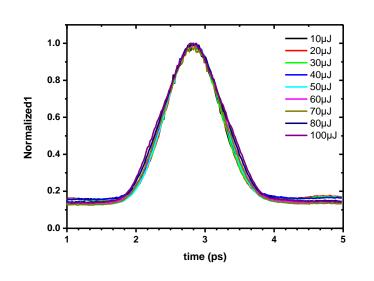


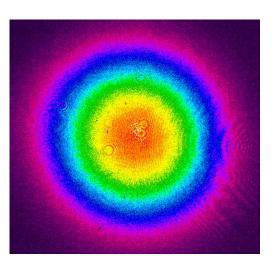


WP4 – Task 4.4/4.5: Fabrication and characterization of photonic microcell (PMC) module & coupling optics for fiber-delivery and interface with system integrator pulse

Design and fabrication



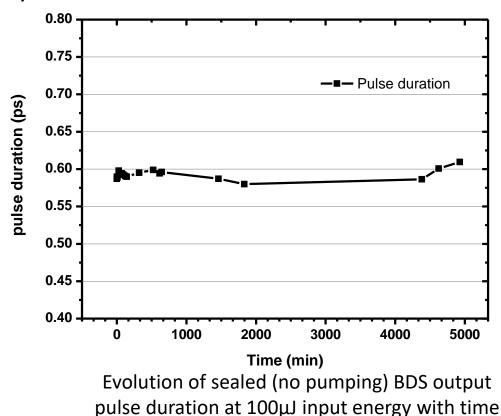




WP4 – Task 4.4: Fabrication and characterization of photonic microcell (PMC) module for fiber-delivery of ultra-short high power pulse

Energy handling, pulse fidelity and beam quality

BDS transmission efficiency (Left), BDS output AC trace (middle), BDS output beam profil (right)



WP4 – Task 4.4: Fabrication and characterization of photonic microcell (PMC) module for fiber-delivery of ultra-short high power pulse

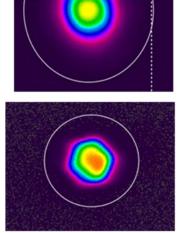
Mode quality with movement, pulse stability with sealed BDS

Laser output

Test & qualification by partners

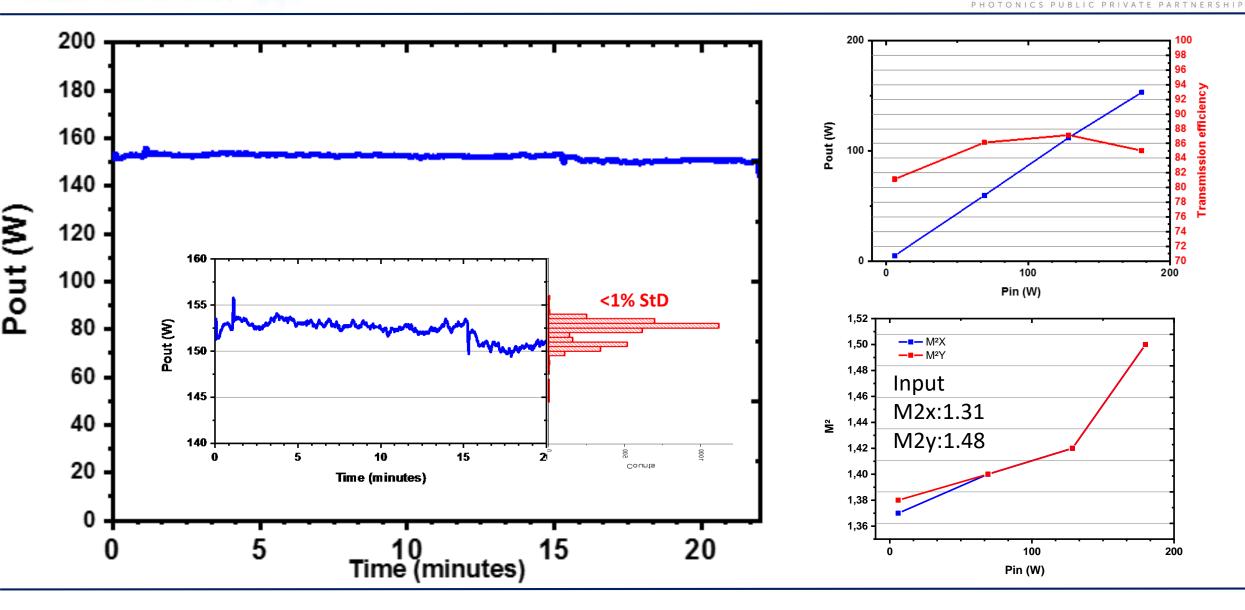
- AS tested BDS (non cooled version) with 100 W
- USTUT early test of water-cooled version of BDS

Laser input


(After a beam expander)

180W in

Z Locations (mm)

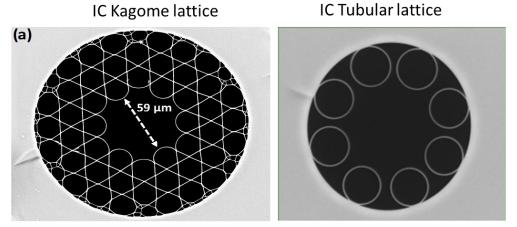

Setup Part B Setup Part A Setup Part C BDS ouput 153W out **BDS/PMC version #4** Double monocoil Water cooled input cell Low drift iris actuato

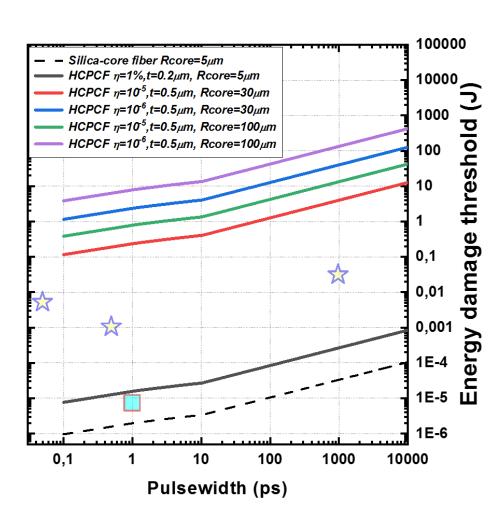
D40 (µm)

WP4 – Task 4.6: Design and fabrication of polarization maintaining hollow-core photonic crystal for ultra-high energy pulse delivery

• Overview, XLIM, GLO

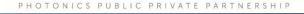
		₹	2	£ .	₹ %	≨	W 98	2	M W	M11 M12	M13	¥	MIS	M16	M18	M19	Me Me	M22	MZ3	M24 M25	MZ6	M27	eg Wes	MBO
WP4 - Photonic components for pre-and-post-pulse conditioning			N.	84.1		M4.2	M4	.3		M4. M4.			и4.7 М М	4.4 4.8						4.10 4.11				
T4.1 Design of grating co	ompressors		3000							M4.	5)		§M	4.9										
T4.2 Development of a lithography process for the fabrication of pulse compression gratings			-								-									-				
T4.3 Development of an etching process for the fabrication of optical components																								
T4.4 Fabrication and characterization of photonic microcell (PMC) module		200	D	4.1					D4.3	1				D4.3										
T4.5 Design/Fabrication of photonic microcell module with integrated coupling optics							-								D	4.4				D4.5				
T4.6 Design and Fabricat	tion of polarization maintaining hollow-core photonic crystal											-							D	4.6				D4.7

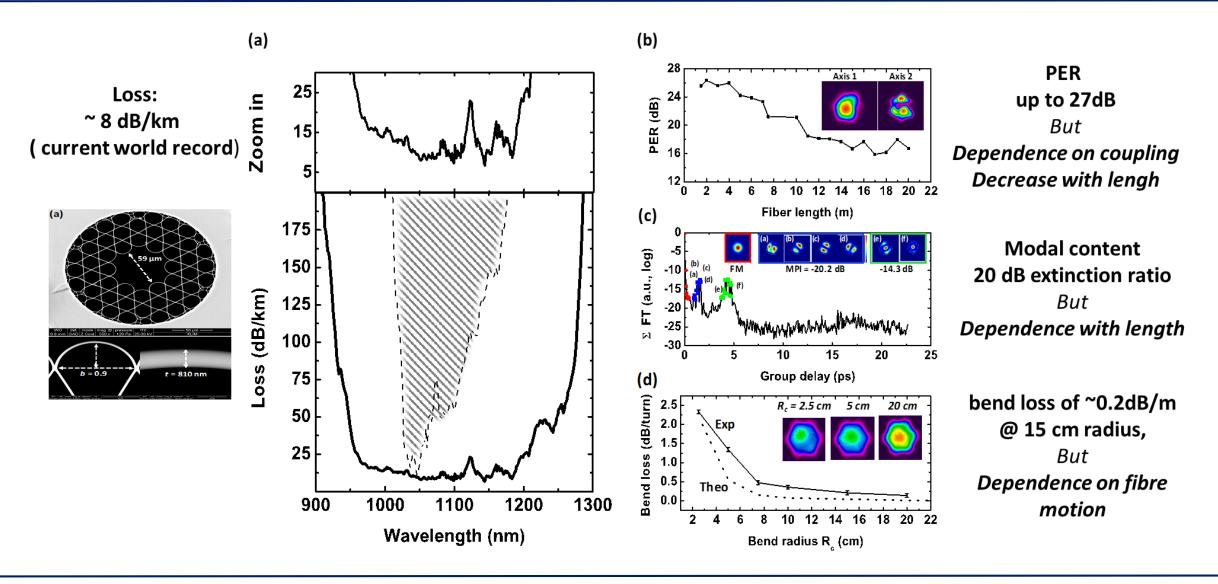

- Achievements...
 - Two fiber designs explored (transmission loss: new records)
 - Kagome fiber parameters with PER=21 dB
- Deviations and proposed corrective actions...
 - NA

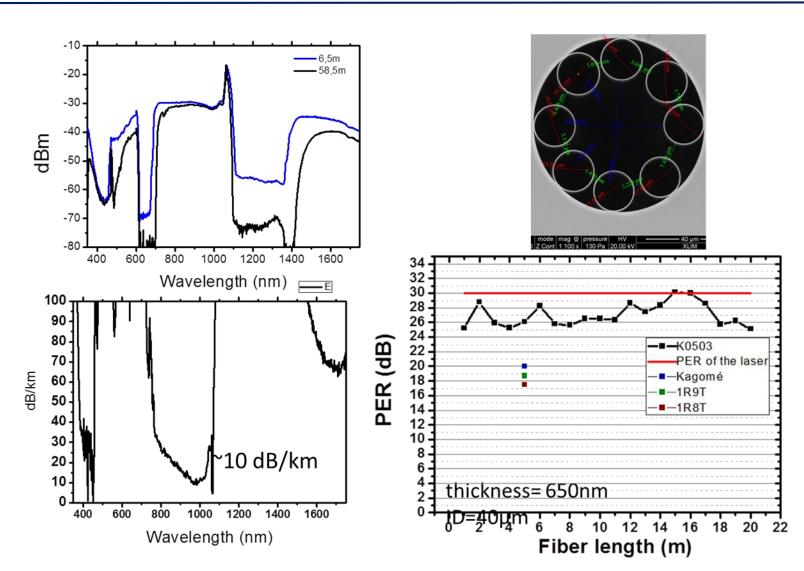


Fiber design identification

Strategy taken

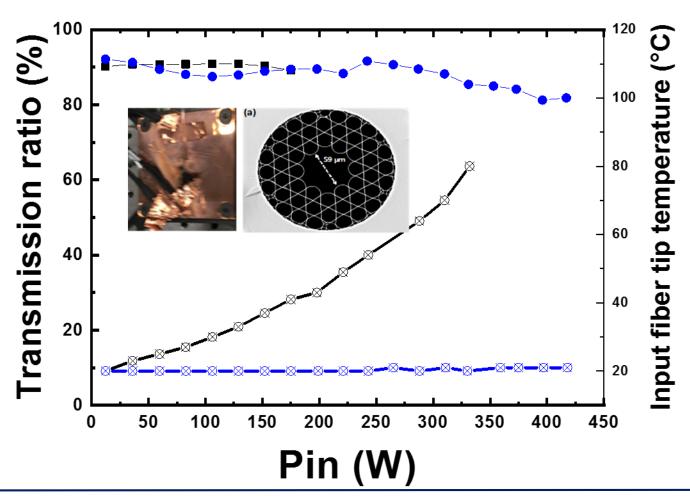

Fine tune the strcutural parameters of the fibre (strut thickness, contour curvature) to target high PER whilst keeping: ultra-low loss, ultra-low overlap with silica and close to single mode modal content



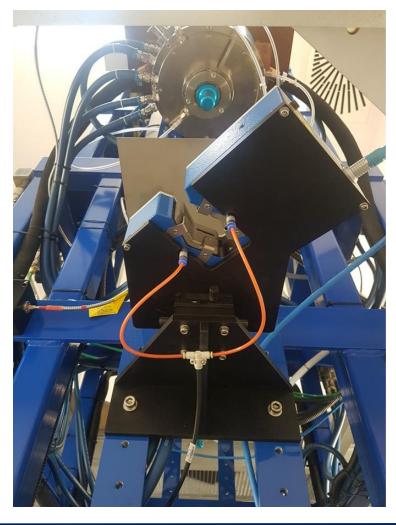


PER up to 30dB STABLE WITH LENGTH

Loss 10 dB/km

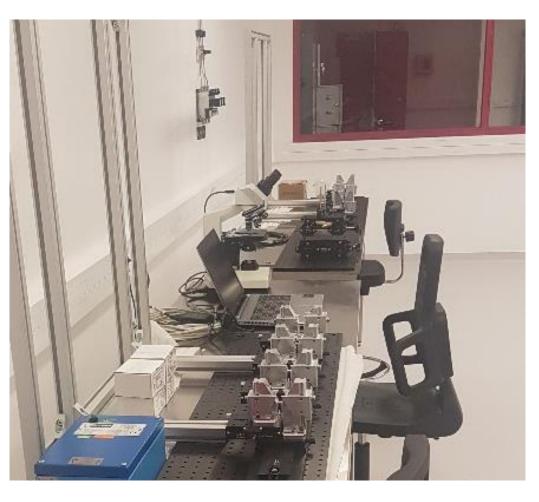


Fiber Power handling preliminary test (lab conditions)


- Laser beam quality (M2 and jitter) dependent Performance
- Fiber Mounting dependent
- Guidance of 250-300 W range with no fiber cooling
- up to 400W (laser limit) demonstrated with water cooled fiber tip mount

Installation of GLO new drawing facilities

- Prefrom drawing tower
- Fibre drawing tower
- Double layer coating capabilities
- Clean room and monitered ambient conditions



Stacking and fibre & preforms pre-processing

- Clean room (ISO7)
- Stacking rigs
- Stocking
- Annealing systems

First test runs & Tech transferCane draw tested/validated

- Std diameter fibre draw tested/validated
- Instrument calibration of IC HCPCF ongoing
- GPPMM fibres qualification to start on Sept. 2018

WP4 Photonics Components for preand post- pulse conditioning

THANK YOU