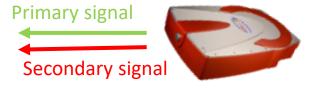
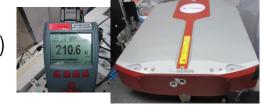


WP3 – Ultrafast Laser Frontend Development

Clemens Hönninger, Amplitude



Work Package 3 - Overview


Objective: Develop ultrafast laser frontends for further amplification to a 500-W and 1-kW average power femtosecond laser

Organized in 3 tasks:

T3.1. A 50-W, 300-fs laser with >1MHz and spectrally tailored for injecting an Yb:YAG thin disk amplifier (AMP lead, USTUTT)

T3.2. A 200-W, ~500-fs laser at >1MHz (AMP lead, USTUTT, AMO)

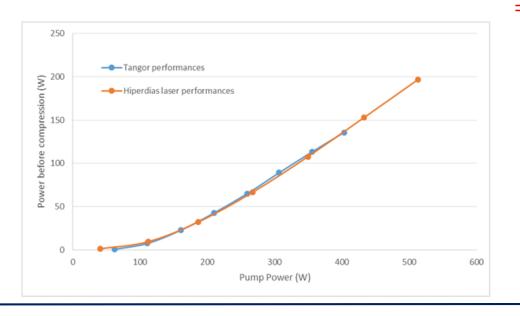
T3.3. A high power capable user interface including high speed modulation of the amplified pulse train (AMP lead, USTUTT, C4L, AMO, BOSCH, XLIM, LASEA, GLO, E6)

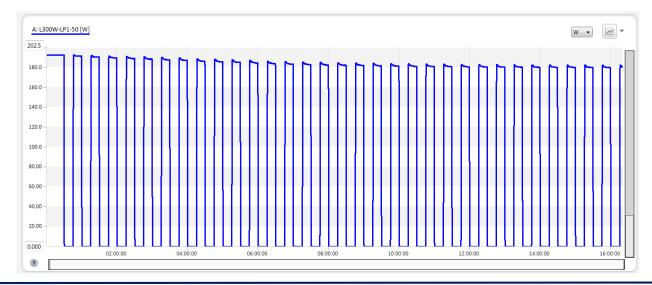
WP3 – Deliverables

Deliverable title	Due date	Status
D3.1 50-W, 300-fs, >1-MHz laser for seeding an Yb:YAG amplifier (1)	M09 – October 2016	✓
D3.2 50-W, 300-fs, >1-MHz laser for seeding an Yb:YAG amplifier (2)	M09 – October 2016	✓
D3.3 200-W, sub-500-fs, >1-MHz laser (1)	M21 – October 2017	Submitted 05/07/2018
D3.4 200-W, sub-500-fs, >1-MHz laser (2)	M21 – October 2017	Submitted 06/07/2018

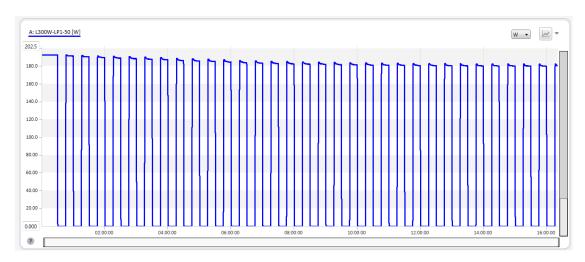
WP3 – Milestones

Milestone title	Due date	Status
MS7 Interface definition fixed	M08 – September 2016	✓
MS8 A 50W, 300fs at >1 MHz seed laser	M09 – October 2016	✓
MS16 System layout fixed	M12 – January 2017	✓
MS23 A 200W, sub-500fs, >1 MHz laser system	M21 – October 2017	✓




WP3 – Task 3.2: 200-W, ~500-fs laser >1MHz at 1030nm

- partners involved: AMP lead, USTUTT, AMO
- Achievements:
 - Hybrid fiber-seeded/crystal-amplifier architecture based on Tangor platform
 - >200W output power achieved from amplifier in late 2017
 - BUT: issue with long term stability revealed during stress testing



WP3 – Task 3.2: 200-W, ~500-fs laser >1MHz at 1030nm

• Ageing issue resolved:

Amplifier performance under ON/OFF cycling

before

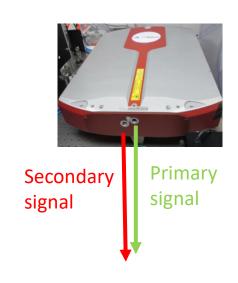
WP3 – Task 3.2: 200-W, ~500-fs laser >1MHz at 1030nm

• Further laser performance:

450 fs @ 1MHz

~200-W amplifier power, 150-W compressed

197.4W

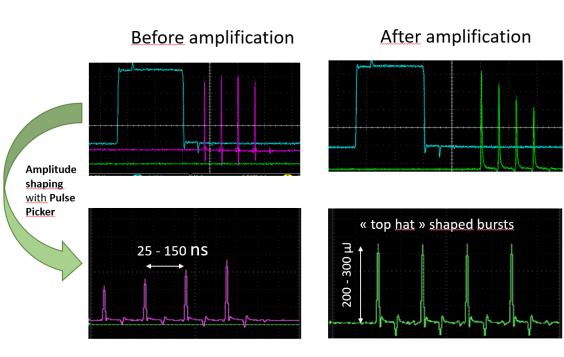


WP3 – Task 3.3: A high power capable user interface including high speed modulation of the amplified pulse train

- partners involved: AMP lead, USTUTT, C4L, AMO, BOSCH, XLIM, LASEA, GLO, E6
- Major achievements:
 - Control interface based on Tangor platform
 - High speed modulation with external Trigger control of the pulse picker
 - Primary (1st order) and secondary (0th order) output signals of the ultrafast Frontend facilitate high speed modulation of the >500-W thin disk multipass amplifier of partner USTUTT
 - Variable compressed pulse duration from 450fs to 10ps

3. Compressor adjustment table

	1MHz	2MHz
min	4825	4524
800fs	5624	
1ps	6124	
2ps	7925	
5ps	11924	
10ps	19924	



WP3 – Task 3.3: A high power capable user interface including high speed modulation of the amplified pulse train

- further achievements:
 - Burst mode operation

• Sensors, parameter monitoring, Log-Files

WP3 - Conclusions

- Task 3.1 completed (no activities in this period)
- Task 3.2 and related deliverables were delayed because of technological difficulties encountered (now resolved)
 - Mitigation plan for the project:
 - 1. Delivery of an additional R&D Tangor prototype with ~100W average power to C4L in Mai 2018
 - 2. Optimization of prototype and prototype delivery to USTUTT in Oct 2018 (scheduled for next week, 09/10/2018)
- Task 3.3 on track
 - Concept implemented in demonstrator for USTUTT (primary and secondary signal output)
 - Support to partners (USTUTT, LASEA,...) for implementation to high power TD amplifier