

WP 2 Process Development

Christian Freitag, University of Stuttgart

Work Package 2

- HIPERDIAS application areas:
 - 3D Silicon processing
 - Fine cutting of metals
 - Diamond ablation
- Agenda:
 - Task 2.1: Fundamentals Si Processing Update from Bosch
 - Task 2.2: Fundamentals Fine Cutting of Metals Update from C4L
 - Task 2.3: Fundamentals Diamond Ablation Update from E6
 - Task 2.4: Upscaling Update from USTUTT

Partners involved:

CLASS LASER See the light

IFSW

HIPERDIAS – BOSCH Objectives

- Overall: physical root-cause analysis ultrashort pulse laser ablation of Si
- WP1: Define characteristic requirements (KPIs)
- WP2.1: Test structure and process evaluation on medium-power systems (≅ 50 W)
- Process optimization & parameter robustness incl.: target specifications HIPERDIAS high-power system (Integration meeting in 05/17 w/ Amplitude, LASEA, USTUTT)
- WP2.4, WP7: Support process upscaling: Start as soon as IFSW 500 W laser system available

WP	H1/16	H2/16	H1/17	H2/17	H1/18	H2/18
WP1	Definition and eva	luation of KPIs				
WP2.1		Fundamental Proces Specifications (medi	s Development & Def um-power lasers up to			
WP2.4, WP7					Support upscaling to	1 kW system
completed /		C	ompleted	to start asa	p /	

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP 2.1 – BOSCH Key Performance Indicators

Test structure

- Features typical of potential applications:
- Ablated volume: 12 mm³
- Chamfer
- Steep walls
- Tight radius

Туре	Unit	Target	Current Status
Average ablation rate	mm³∕s	≥1	0.05
Peak ablation rate	mm³∕s	≥3	0.1
Average ablation rate (specific)	mm³∕kJ	≥1	3.1
Peak ablation rate (specific)	mm³∕kJ	≥3	5.5
Shape deviation	μm	≤10	<10
Average surface roughness Ra	μm	≤1	<0.5
Surface damage thickness	μm	≤1	<1
Surface defects > 1 μm	1/mm²	none	None
Min. edge radius	μm	≤ 200	60
Max. edge-steepness	degree	≥ 70	80

- Results achieved: All KPIs w/i specifications, except for absolute ablation rate
- Critical: trade-off between surface quality (roughness) and productivity (ablation rate)
- Productivity/quality trade-off managed by using burst mode

KPI evaluation

WP 2.1 – Ablation in Burst Mode

"Sweet spot" identified w/ 5-pulse bursts, 0.3 ps pulse duration and 2 J/cm² fluence

WP 2.1 – Summary

Single-pulse vs. burst-mode ablation

	single-pulse	2-pulse burst	5-pulse burst	
pulse duration to access regime II	> 3 ps	0.3 ps (or less)	0.3 ps (or less)	5
roughness Ra	\gg 1 μ m (0.3ps)	1 µm	1 µm	
ablation rate	2.5 mm³/kJ	2 mm³/kJ	5.5 mm³∕kJ	

Outlook: Upscaling to 500 W (1000 W)

- 1st trials w/ 670 W source at USTUTT (2016)
- High scan speed required
- Wafer failure if heat removal insufficient

- System specs defined on integration planning meeting (05/17 at USTUTT)
- Upscaling to start @ USTUTT as soon as laser system available \rightarrow important challenge:

Adapt scanning strategy and heat removal to avoid surface deterioration and catastrophic heat accumulation

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP 2.4 – Outlook: Challenges

Geometric impact of parameters on chamfer morphology (example)

WP 2.4 – Outlook: Challenge: Heat Accumulation

Bosch Contribution – Current Status

Milestone M2.1 (M24): done

"High quality 3D Si processing with low average power"

- KPIs achieved w/ low average power
- Optimum parameter set communicated to laser and system development partners

Deliverable D2.1 (M24): done

• "Process limits 3D Si processing"

Deliverable D2.4 (M30):

- Upscaling Si ablation
- Work to be started asap

HIPERDIAS

Deliverable 2.1: Process limits 3D Si processing

Dissemination Level: Confidential (CO)

Owner	
Name:	Martin Lustfeld
Lead Beneficiary:	BOSCH
Phone:	+49 1525 8813 570
E-mail:	Martin.lustfeld@de.bosch.com
<u>Context</u> Author(s): Work Package: Task:	M. Lustfeld, G. Kunz, M. Ametowobla (Bosch); J.A. Ramos de Campos, D. Bruneel (LASEA) WP2 Task 2.1: Fundamental process development 3D Si processing

Work Package 2

- HIPERDIAS application areas:
 - 3D Silicon processing
 - Fine cutting of metals
 - Diamond ablation
- Agenda:
 - Task 2.1: Fundamentals Si Processing Update from Bosch
 - Task 2.2: Fundamentals Fine Cutting of Metals Update from C4L
 - Task 2.3: Fundamentals Diamond Ablation Update from E6
 - Task 2.4: Upscaling Update from USTUTT

Description of Work

- Task 2.2 Fundamental process development fine cutting of metals (C4L;USTUTT)

 Understand process parameters, low power system.
 Serves as input for upscaling
 Completed. Deliverable 2.2 M24 (01.2018)
- Task 2.3 Fundamental process development diamond ablation (E6; C4L)

 Support role for E6, facilitate experimentation.
 Completed. Deliverable 2.3 M24 (01.2018)
- Task 2.4 Upscaling of applications for high throughput (USTUTT; C4L, BOSCH, LASEA) • Achieve KPI's

○ Incomplete. Deliverable 2.5 – M30, Deliverable 2.6 – M30 (07.2018)

WP 2 – Deliverables

Deliverable	Tille	Due Date	Status	Update
D2.1	D2.1 Process limits 3D Si processing	M24 (01.2018)	\checkmark	
D2.2	D2.2 Process limits fine cutting of metal	M24 (01.2018	~	
D2.3	D2.3 Process limits diamond processing	M24 (01.2018	√	
D2.4	D2.4 Processing strategies for high power 3D Si processing	M30 (07.2018)		
D2.5	D2.5 Processing strategies for high power fine cutting of metal	M30 (07.2018)	×	M36 (01.2019)
D2.6	D2.6 Processing strategies for high power diamond processing	M30 (07.2018)	×	M36 (01.2019

Deliverable 2.2 – Set up

Laser Source: Carbide (Light Conversion)

Wavelength	1030nm
Average power	5 W
Max. pulse energy	83 μJ
Max. frequency	1 MHz
Pulse duration	230 fs to 20 ps

Beam deflection : Scancube III 14 (Scanlab)

Operation	Galvonometer
Marking speed	2500 mm.s ⁻¹
Scan field	70mm ² (100mm telecentric)

Axis: PRO165LM (Aerotech)AxisX,Y,ZRepeatability< 1μm</td>Accuracy2 μm

Accuracy2 μmMax speed2000 mm.s⁻¹

Consortium Meeting | Bern | 26th April 2018

Deliverable 2.2 – Material

Brass :	MS63 (Allmeson GmbH)					
	Cu:Zn	63:37				
	Thickness	0.2 mm				
	Geometry	Variable				
	Density	8.5g.cm ⁻³				
	Melting Point	920°C				

Steel: 1.4310 (Deutsche Edelstahlwerke)

Contents	Fe, Cr, NI, MIN, MIO, N, C, P, S, SI
Thickness	0.2 mm
Density	7.9 g.cm ⁻³
Melting Point	1420 °C
Geometry	Variable
Characteristics	Good mechanical, high tensile s
	trength suitable

- Visual inspection must be used, equal consideration.
- Recalibration for 120W system trials

Consortium Meeting | Bern | 26th April 2018

Deliverable 2.2 – Conclusions

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP 2 Plan of experimentation

2 Step process

- 2 Months Primary processing (fundamental process development)
- 3 Months Applied processing
- 1 Month Buffer

No.	KPI	Values	Validation status
		Expected : ≥ 400 mm/min	
1	Cutting speed	Validated : ≥ 300 mm /nin	0
		Not validated : < 300 mm/min	•
		Expected : Washing	٩
2	Post Processing/Cleaning	Validated : Vibratory grinding (electro- polishing for some parts only)	0
		Not validated : Additional work/cost	9
	Production Cost	Expected : ≤ 0.4	
3	In €, for 1 watch arm	Validated : ≤ 0.45 Fundamer	tal 🥥
	– batch of 1000	Non validated : > 0.45	9
	Surface roughness	Validated : ≥ 300 mm/min	٩
4	(functional/non-	Not validated : < 300 mm/min	9
	functional)	Not validated : R _a ≥ 1 µm	
		Expected : < ± 2 µm	٩
5	Shape deviation	Validated : < ± 5 µm	9
		Not validated : > ± 5 µm	9
		Expected : 0°	٩
6	Taper	Validated : Within dimension tolerances	0
		Not validated : Above dimension tolerances	٩
		Expected : None	٩
7	Colouration	Validated : Washable surface oxidation	0
		Not validated : Persistent surface oxidation	٢
		Expected : Fall down in US-bath	<u> </u>
8	Untying of part	Validated : Fall down in US-bath with separation cut	9
		Not validated : Mechanical removal	

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP 2 Process development

Task	M23	M24	M25	M26	M27	M28	M29	M30	M31	M32	M33	M34
Fundamental developmetn (5W)		D2.2										
Laser arrival						May (Mid)		July (Mid)				
Upscaled applications												
Fundamental processing (120W)										Sep (Mid)		
Applied Processing (120W)										Sep (Mid)		→ Jan (Mid)
4 beam path processing								July (Late)				

Work Package 2

- HIPERDIAS application areas:
 - 3D Silicon processing
 - Fine cutting of metals
 - Diamond ablation
- Agenda:
 - Task 2.1: Fundamentals Si Processing Update from Bosch
 - Task 2.2: Fundamentals Fine Cutting of Metals Update from C4L
 - Task 2.3: Fundamentals Diamond Ablation Update from E6
 - Task 2.4: Upscaling Update from USTUTT

Partners involved:

CLASS LASER See the light

IFSW

- Status
 - T2.3
 - D2.3 confidential version
 - D2.3 public version

Complete 🚩

Document complete 🛛 🚩

Awaiting for approval from engineering manager \checkmark

- Experimental set up
 - Three Element Six PCD grades tested

PCD Grade Name	Average Grain Size (µm)	Diamond Content (wt %)	Cobalt Content (wt%)
CMX850	1	80	20
CTB010	12	90	10
CTM025	30	90	10

• Grades presenting highest variation in diamond grain size and diamond content

- Experimental set up
 - Ablation trials with low power ultra-short pulsed laser

- Experimental Set Up
 - Ablation trials with low power ultra-short pulsed laser

- Experimental Set Up
 - Ablation trials with low power ultra-short pulsed laser

- Influence of Heat Accumulation
 - Increase of ablation rate with heat accumulation

- Influence of Heat Accumulation
 - Increase of ablation rate with heat accumulation

Over 95% overlap :

- Increase of ablation rate
- Surface critically damaged

HEAT ACCUMULATION EFFECT

- Variation of Ablation Rate with PCD grades
 - PCD grades

PCD Grade Name	Average Grain Size (µm)	Diamond Content (wt %)	Cobalt Content (wt%)
CMX850	1	80	20
CTB010	12	90	10
CTM025	30	90	10

• Measurement of the ablation rate variation with fluence

- CTB 5W
 CTB 4W
 CTB 3Ws
 × CMX 5W
 × CMX 4W
 × CMX 3W
 ▲ CTH 5W
 ▲ CTH 4W
 ▲ CTH 3W
- Optimal fluence for every PCD grade at every average power
- Optimal fluence shifts to a higher value for PCD grades with bigger grain size
- Lower ablation rate for bigger grains at low fluence
- Higher ablation rate for grades with higher diamond content at high fluence

- Process Optimization and Limitation in Spot Size
 - Two steps processing
 - Polishing to be achieved with spot size below $10\mu m$
 - Optimal fluence expected between 0.5J/cm⁻² and 1J/cm⁻² for processing at high power
 - High power laser over 100µJ pulse energy
 - Fluence over 1J/cm $^{\text{-2}}$ with 100µJ and spot of 10µm
 - So two processing steps required:
 - 1. Smoothing step will be performed with large spot size at high pulse energy/high average power
 - 2. Finishing step will be performed with small spot at low pulse energy/low average power

- Process Optimization and Limitation in Spot Size
 - Maximum spot size

$$d = 2 \sqrt{\frac{E}{\pi F}}$$
 Average power: $P = 200$ W
Frequency: $f = 2$ MHz
Pulse energy: $E = 100$ µJ

Optimal fluence: F =	0.49J/cm ⁻²	1J/cm ⁻²	2J/cm ⁻²
Spot diameter: d =	160μm Maximal spot size	112µm	80µm

- Process Optimization and Limitation in Spot Size
 - Minimum spot size
 - Topography of lapped PCD wafer
 - Peak with an average width of $1\mu m$
 - Optimal minimum spot size 1µm
 - Not corresponding to final ablated surface prior to laser-polishing

- Process Optimization and Limitation in Spot Size
 - Limitation in spot size and speed
 - Minimum can only reach 7.6µm.

Not critical as topography after ablation at high power is yet unknown.

The goal was to determine smallest spot achievable on this system.

• Maximum reaches 160µm.

Match the requirement of spot diameter to work close to the optimal fluence at high pulse energy

- Graphitization of Diamond under Ultra-Short Pulsed Ablation
 - Raman spectroscopy analyses

Fluence	e No. 2 Area 0 Sui	Reference point (initial surface)	Lapped surface for CMX850* EDM ground surface for CTB010*
Powe	Sample 1	ample 1 High power – Low fluence 5W – G	5W – 0.39 J/cm ⁻²
No. 3 No. 4	Sample 2	High power – High fluence	5W – 6.95J/cm ⁻²
No. 0	Sample 3	Low power – Low fluence	3W – 0.23J/cm ⁻²
 Reference	Sample 4	Low power – High fluence	3W – 3.86J/cm ⁻²

- Graphitization of Diamond under Ultra-Short Pulsed Ablation
 - SEM/Raman Spectrometer Measurements

CMX850 1µm grain size, 80% wt diamond content

- Graphitization of Diamond under Ultra-Short Pulsed Ablation
 - SEM/Raman Spectrometer Measurements

CMX850 1µm grain size, 80% wt diamond content

- Graphitization of Diamond under Ultra-Short Pulsed Ablation
 - SEM/Raman Spectrometer Measurements

CMX850 1µm grain size, 80% wt diamond content

- Graphitization of Diamond under Ultra-Short Pulsed Ablation
 - SEM/Raman Spectrometer Measurements

- Graphitization of Diamond under Ultra-Short Pulsed Ablation
 - SEM/Raman Spectrometer Measurements

CTB010 12µm grain size, 90% wt diamond content

• Conclusion

Parameters	Current Performances	E6 Specifications	Specification agreed with partners
Wavelength	1030nm	1030nm	1030nm (GREEN??)
Power	5W	200W	100W*
Pulse duration	230fs – 10ps	< 500 fs – 10ps	400fs – 10ps
Frequency	60kHz-1MHz	<2MHz	<2MHz
M ²	1.2	1.2	<1.3
Pulse burst	None	Pulse burst	Multi pulses burst??
Maximum scanning speed	3000mm/s	<3000mm/s	3000mm/s
Spot diameter	20µm	2µm – 160µm	<mark>7.6μ</mark> m - 160μm
Polarization	Circular	Circular	Circular

- *Agreement on delivery of industrial TANGOR laser with average power of 100W
- Installation : 14th of May

Task 2.4: Upscaling of applications for high throughput

- Status
 - Task not started To start by mid of June
 - Delibery of 100W TANGOR 1st week of May
 - Installation scheduled on 14th of Mays
 - D2.4 not started

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

Work Package 2

- HIPERDIAS application areas:
 - 3D Silicon processing
 - Fine cutting of metals
 - Diamond ablation
- Agenda:
 - Task 2.1: Fundamentals Si Processing Update from Bosch
 - Task 2.2: Fundamentals Fine Cutting of Metals Update from C4L
 - Task 2.3: Fundamentals Diamond Ablation Update from E6
 - Task 2.4: Upscaling Update from USTUTT

Partners involved:

CLASS LASER See the light

IFSW

Task 2.4: Upscaling (500 W)

- Schedule:
 - This week: Characterization of the amplified laser
 - Next week: Connecting laser to Lasea station and testing
 - Week beginning 07.05.: Start of experiments

• Goal (1000 W):

Key Performance Indicator	Symbol	Unit	Target Value	BOSCH	
KPI #1: average ablation rate	\overline{V}	mm³∕s	≥1	0,0574 (P _{av} = 20 W)	1.435 mm³/s @ 500W
KPI #2: peak ablation rate	\dot{V}_{max}	mm³⁄s	≥3	-	$2.87 \text{ mm}^{3/s}$
KPI #3: shape deviation	δ_S	μm	≤10 (waviness)	<10	@ 1000W
KPI #4: average surface roughness	S_a	μm	≤1	<0,5	(linear
KPI #5: thickness of surface damage	$l_{d,sd}$	μm	≤1	<1	scaling)
KPI #6: Surface defects > 1 μm	_	1/mm²	none	none	
KPI #7: min. achievable edge radius	r_e	μm	≤ 200	60	
KPI #8: max. edge-steepness	α_e	degree	≥ 70	80	

IFSW

- Task 2.4: Upscaling (500 W)
- Strategy:
 - Use parameters from D2.1 (Bosch) as a starting point

Laser / Process Parameters	Symbol	Unit	Value	IFSW
Average power	P _{av}	W	20	
Pulse duration	τ	fs	320	300
Intraburst distance	τ _{burst}	ns	20	25
Burst number	n _{burst}	-	5	Max. 5
Scan velocity	V	m/s	0,655	
Hatch distance	a _{hatch}	μm	13,1	
Pulse repetition rate				Max.
	f _{rep}	kHz	80	1.28 MHz
Spot diameter	d _{spot}	μm	71,25	TBD
Pulse energy per burst				
	E _{burst}	μJ	250	
Pulse energy	E _{pulse}	μ	50	390 μJ

Number of pulses per spot: 8,7

Hatch overlap:

18%

Burst available up to **5 pulses** (with declining pulse energy) Pulse repetition rate **1.28 MHz** (adjustable) **D2.1:** Energy specific ablation

volume constant for high fluences @ 300 fs

Task 2.4: Upscaling (500 W)

- Strategy:
 - Investigate heat accumulation effects in detail
 - Calorimetric measurement of $\eta_{A}{\cdot}\eta_{resP}$
 - Simulation of heat accumulation
 - Heat accumulation between pulses $\rightarrow v_{crit} / N_{P,crit}$
 - Heat accumulation between overscans $\rightarrow N_{OS,crit}$
 - Influence of system specific parameters on energy specific ablation volume
 - Fluence (spot size)
 - Number of burst pulses
 - Pulse repetition rate
 - Controlled ablation with OCT
 - Reach required shape accuracy by controlled depth progress
 - Two step process possible: Fast ablation followed by accuracy improvement.