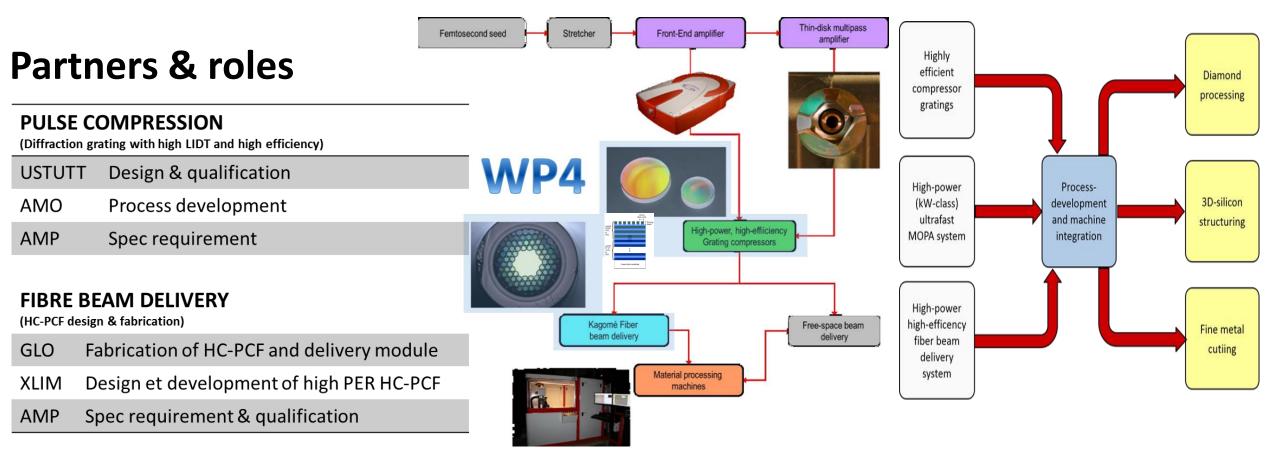


WP4 Photonics Components for pre- and post- pulse conditioning

Fetah Benabid

GPPMM group, XLIM Research Institute, CNRS-Université de Limoges, UMR 7252, Limoges, France

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880



PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Work Package 4 Overview

AIM: Pulse compression & fibre beam-delivery

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Work Package 4 Overview

AIM: Pulse compression & fibre beam-delivery

Peak Power [MW]

HEXPERIED OUTCOMES Consortium Meeting | Aachen | 27 & 28 March 2017

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Work Package 4 Overview

TASK BREAKDOWN

6 tasks, 14 Milestones & 7 delivrables

	PULSE COMPRES (Diffraction grating with high LIDT a					M DELIVERY	
TASK /Leader	Description	Milestones	Deliverables	TASK /Leader	Description	Milestones	Deliverables
4.1 /USTUTT	Design of grating compressor • Design of the gratings • Parameter space review	M4.1 (M03)	D4.1(M04) D 4.2(M12)	4.4/ GLO	Fabrication & characterization of PMC module for USP fibre- delivery	M 4.1 (M06) M 4.5 (M12,18,28)	D4.4 (M24, M36) D4.7 (M30)
4.2 /AMO	Development of optimized lithography process for the fabrication of pulse compression gratings			4.5/ GLO	Design and Fabrication of photonic microcell module with integrated coupling optics for fibre-delivery and interface with system	M4.7(M15) M4.9 (M18) M4.10(M24)	D4.6(M30)
4.3 /AMO	Development of optimized etching process for the fabrication of pulse	M4.3(M08) M4.4(M12) M4.8(M18)	M05-M30 D 4.2	4.6/ XLIM	integrator. Design and Fabrication of high PER HC-PCF for ultra- high energy pulse delivery	M 4.6 (M12) M4.11(M24)	D4.5 (M24)
	compression gratings	<u>'</u>	1				L

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

M

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP4 - Milestones

Milestone title	Task	Due date	Status
M4.1 First design, high efficient grating mirrors	T4.1	M03 – April 2016	Fulfilled
M4.2 PMC module for fiber beam delivery prototype #1	T4.4	M06 – July 2016	fulfilled
M4.3 1 st generation grating mirror on large area, rectangular substrates fabricated	T 4.3	M08 – September 2016	fulfilled
M4.4 Fully optical characterization of grating mirror regarding diffraction efficiency and LIDT	T4.3	M12 – January 2017	Ongoing Diffraction efficiency: fulfilled LIDT: carried out
M4.5 PMC module for fiber beam delivery prototype #2 PMC module for fiber beam delivery prototype #3 PMC module for fiber beam delivery prototype #4	T4.5	M12 – January 2017 M18-July2017, M28-May 2018	Fulfilled. Ongoing qualification by AMP & USTUTT
M4.6 Design of HC-PCF with improved PER at $1\mu m$ (>20 dB)	T4.6	M12 – January 2017	Fulfilled with ongoing characterization and improvement
M4.7 End-capping definition and process design	T4.5	M15 – April 2017	Partial fulfillment
M4.8 Demonstration of optimized grating mirrors, 99% DE	T4.3	M18 – July 2017	
M4.9 End-capped output PMC module for beam delivery	T4.5	M18-July 2017	Partial fulfillment
M4.10 Qualification of end-capped output PMC module for beam delivery	T4.5	M24-January 2018	
M4.11 Fabrication of HC-PCF with improved PER at 1 um (>20 dB)	T4.6	M24-January 2018	Partial fulfillment
M4.12 End-capped input PMC module for beam delivery	T4.5	M26-March 2018	

WP4 - Deliverables

Deliverable title	Due date	Status
D4.1 Report on simulation of pulse compression gratings with diffraction efficiency >=99% over large spectral bandwidth (5 – 10 nm) around 1030 nm	M04 – May 2016	Delivered
D4.2 Report on first fabrication of pulse compression grating with 98% diffraction energy on large area, rectangular substrate material	M12 – January 2017	delivered
D4.3 Report on fabrication and optical characterization of optimized gratings with single-pass diffraction efficiency >=99% over large spectral bandwidth (5 – 10 nm) around 1030 nm	M18 – July 2017	
D4.4 (x2) Final version of PMC module for fiber beam delivery	M24-January 2018, M36-January 2019	
D4.5 End-capped PMC module for beam delivery	M24-January 2018	
D4.6 HC-PCF with improved PER at 1µm (>20 dB)	M30-July 2018	
D4.7 PMC module based on HC-PCF with improved PER at $1\mu m$ (>20 dB)	M30-July 2018	

WP4 – Task 4.1: Design of grating compressors

• Overview, partners involved...

MARWAN TO COMPLETE

• Achievements...

• Deviations and proposed corrective actions...

• Partners: AMO, USTUTT

• Overview:

Photoresist coating of rectangular substrates:

- Integration of the Gyrset system in coating tool RCD8
- Basic suitability of the Gyrset technique
- Spin curves and investigation of layer homogeneity

Lithography process development for pulse compression gratings:

- Duty cycle adjustment (relevant lithography parameter)
- Process optimization
- First fabrication run + analysis DC homogeneity

cover

WP4 – Task 4.2: Development of an optimization of a lithography process for the fabrication of pulse compression gratings

Photoresist coating of rectangular substrates:

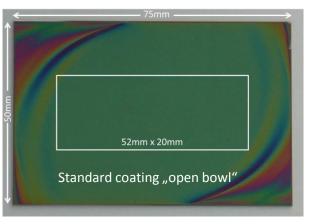
 \rightarrow Integration of the Gyrset system in coating tool RCD8

- Ordered: M05
- System delivered: M08 M08
- Installation + Integration:
- M08 Testing:
- Mechanical problems, rework 2x service visits: M10 + M12
- Start process development

 \rightarrow Not available for the first fabrication run

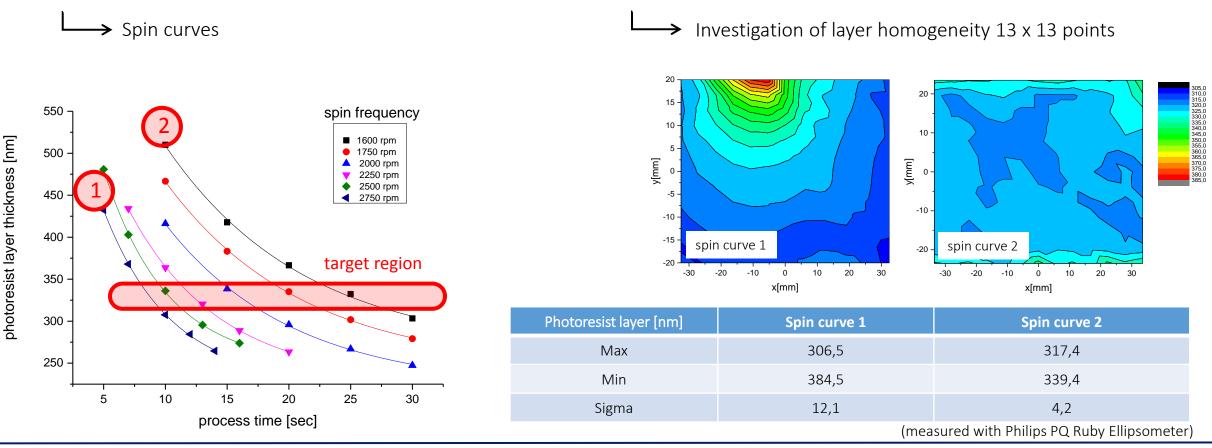
adapted holder with substrate

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880


M13

Photoresist coating of rectangular substrates:

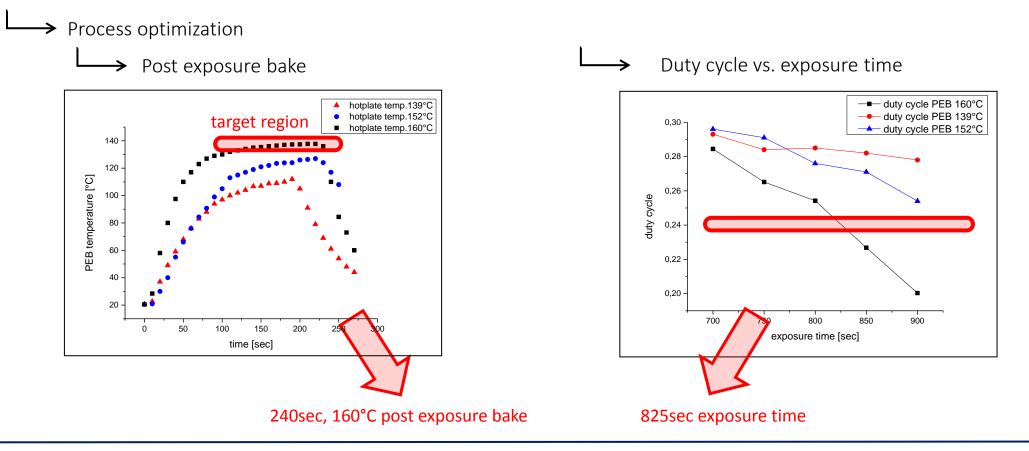
----> Basic suitability of the Gyrset technique



Substrate size	Aspect ratio	Open bowl field size	Gyrset field size	Area gain factor
70mm x 70mm	1:1	51mm x 51mm	62mm x 62mm	1,48
75mm x 50mm	1,5:1	52mm x 20mm	70mm x 45mm	3,03
70mm x 40mm	1,75:1	42mm x 16mm	65mm x 32mm	3,10

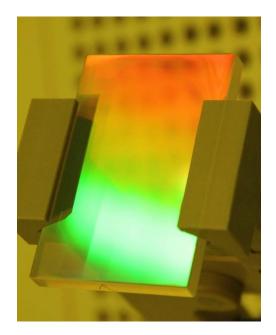
Photoresist coating of rectangular substrates:

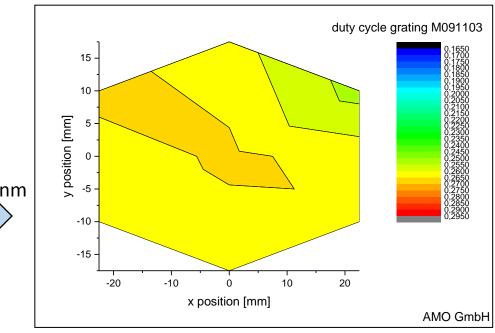
Lithography process development


→ Duty cycle adjustment (relevant lithography parameter)

- Exposure time
 - 4 calibrated photodiodes at the substrate holder identify power drifts of the laser during the exposure
 - Software controlls the exposure time and keeps exposure dose constant
- Post exposure bake
 - Baking time and temperature effect the chemical amplification of the photoresist
 - Precision hotplate specially for semiconductor industry

Lithography process development


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880


Lithography process development

- -----> Fabrication Run1
 - \rightarrow Analysis of the duty cycle from grating to grating

-				
	Range	Maximal	Minimal	Grating
	0,069	0,237	0,168	M081103
	0,029	0,279	0,25	M081104
	0,023	0,265	0,242	M081105
	0,024	0,262	0,238	M081106
	0,067	0,242	0,175	M091101
=13,4nr	0,056	0,268	0,212	M091102
	0,022	0,267	0,253	M091103
	0,020	0,270	0,250	M091104
	0,039	0,268	0,229	M091105
	0,020	0,261	0,241	M091106
-				

→ 2d scan of dc over the active area on 3x3 positions

T4.

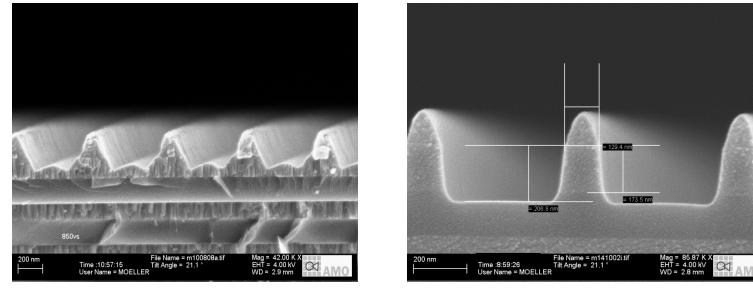
T4. T4. T4. T4.

WP4 – Task 4.3: Development and optimization of an etching process for the fabrication of optical components

• Partners: AMO, USTUTT

	• Overview:	÷	M	6W	3	1	DN	WB	SW .	OIM	CIM CIM	M13	M14	SIM S	M16	M17 M18	6IW	M20	NO1	M22	KON NO4	N25	M26	LOW	MC9	NG0
WP4	- Photonic components for pre-and-post-pulse conditioning		N	44.1		M4.2		M4.3			M4 M4			M4.7	M44 M48						M4. M4.					
4.1 Design of	grating compressors			-							M4				M4.9		-									
4.2 Developm	ent of a lithography process for the fabrication of pulse compression gra	ting	s						-	-																-
4.3 Developm	ent of an etching process for the fabrication of optical components											-														
4.4 Fabrication	n and characterization of photonic microcell (PMC) module		~~~~	D	4.1						D4	2				D4.1										
4.5 Design/Fa	brication of photonic microcell module with integrated coupling optics																				D4.4					D4.5
4.6 Design and	d Fabrication of polarization maintaining hollow-core photonic crystal																				D4.0					D4.7

- Etch process optimization for tantalum pentoxide top layer
- SEM investigation of the line profile
- Fabrication Run1 + analysis of etch depth homogeneity


WP4 – Task 4.3: Development and optimization of an etching process for the fabrication of optical components

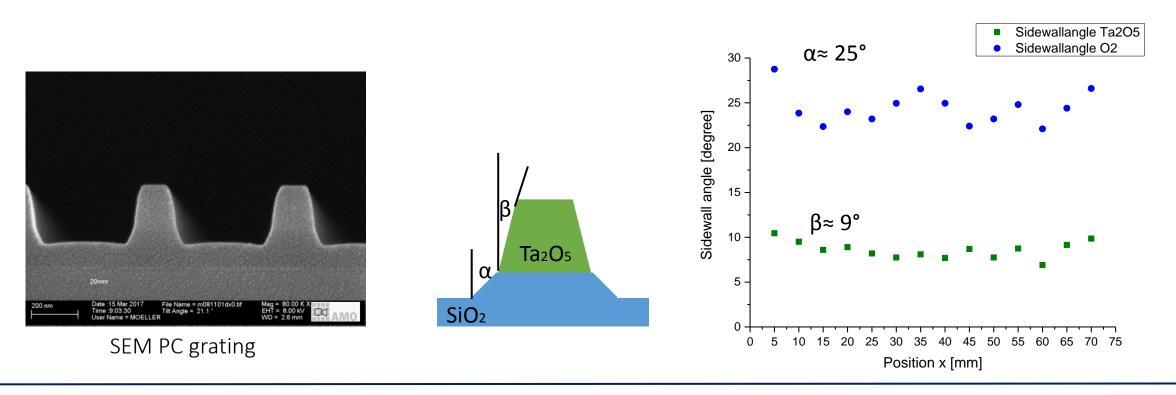
Etch process optimization for tantalum pentoxide top layer

→ Variation of etch parameter

> Influence of the backside cooling

- ICP power
- Gas flow / gas mixture
- Chamber pressure
- Backside cooling

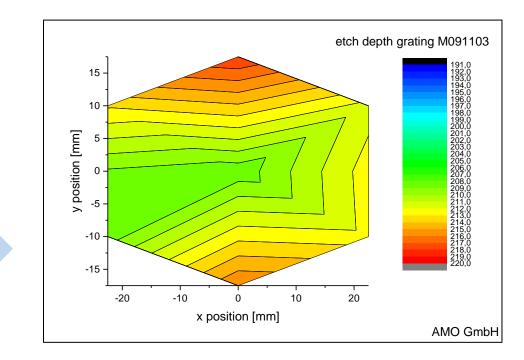
2°C cooling


15°C cooling

WP4 – Task 4.3: Development and optimization of an etching process for the fabrication of optical components

SEM investigation of the line profile

WP4 – Task 4.3: Development and optimization of an etching process for the fabrication of optical components


Etch process development

➤ Fabrication Run1

-> Analysis of the etch depth homogeneity

Grating	Minimal [nm]	Maximal [nm]	Range [nm]
M081103	208,6	217,6	9,0
M081104	197,8	209,1	11,3
M081105	204,5	215,7	11,2
M081106	202,1	212,6	10,5
M091101	200,8	212,6	11,8
M091102	200,7	208,8	8,1
M091103	208,3	218,0	9,7
M091104	207,1	216,0	8,9
M091105	192,0	199,0	7,0
M091106	208,4	219,6	11,2

 \rightarrow 2d scan etch depth over the active area on 3x3 positions

9,7nm

Summary:

Task 4.2

Photoresist coating of rectangular substrates

- Gyrset system is installed and ready for use
- Photoresist layer thickness variation smaller 10%

Lithography process development

- Lithography parameter optimized
- Frist fabrication run carried out
- DC homogeneity better 0,022 (13,4nm)

Task 4.3

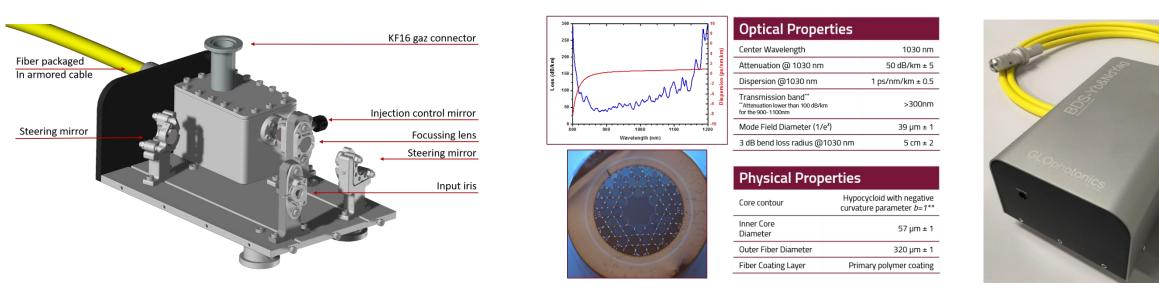
Etch process development and optimization

- Pattern transfer for the first fabrication run carried out
- Sidewall angle 9° for Ta₂O₅ and 25° for SiO₂
- Etch depth homogeneity better 10nm

Work in progress and planned work

- Further process optimization for the Gyrset system
- Integration in fabrication processs
- Second fabrication run

• Partners: GLO, XLIM, AMP

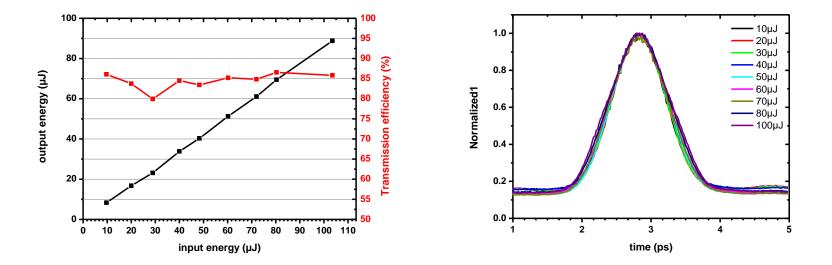

		Ξ.	N	S I	ž	9 9	JW	89 99	M10	L I W	M12	M13 M14	M15	M16	71M	o Mig	M20	M21	M22	M24	M25	M26	N27	M29 M29	M30
	WP4 - Photonic components for pre-and-post-pulse conditioning		. N	14.1		M4.2	. A	14.3			M4.4 M4.5		M4.7	M4.4 M4.8						M4.1 M4.1					
T4.1	Design of grating compressors										M4.6			M4.9											
T4.2	Development of a lithography process for the fabrication of pulse compression gra-	ating	s																						
T4.3	Development of an etching process for the fabrication of optical components																								
T4.4	Fabrication and characterization of photonic microcell (PMC) module			D4	4.1						D4.2				D4	3									
T4.5	Design/Fabrication of photonic microcell module with integrated coupling optics																			D4.4					D4.5
T4.6	Design and Fabrication of polarization maintaining hollow-core photonic crystal																			D4.6					D4.7

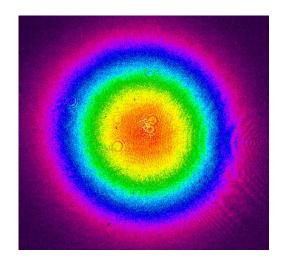
- Design review undertaken
- Prototype of α -prototype made
- Initial Characterization (USP Energy/duration handling, modal content)
- Prototype #2 been achieved and sent to partner AMP (Fab. 2017)
- Deviations and proposed corrective actions...
 - NA

• Design and fabrication

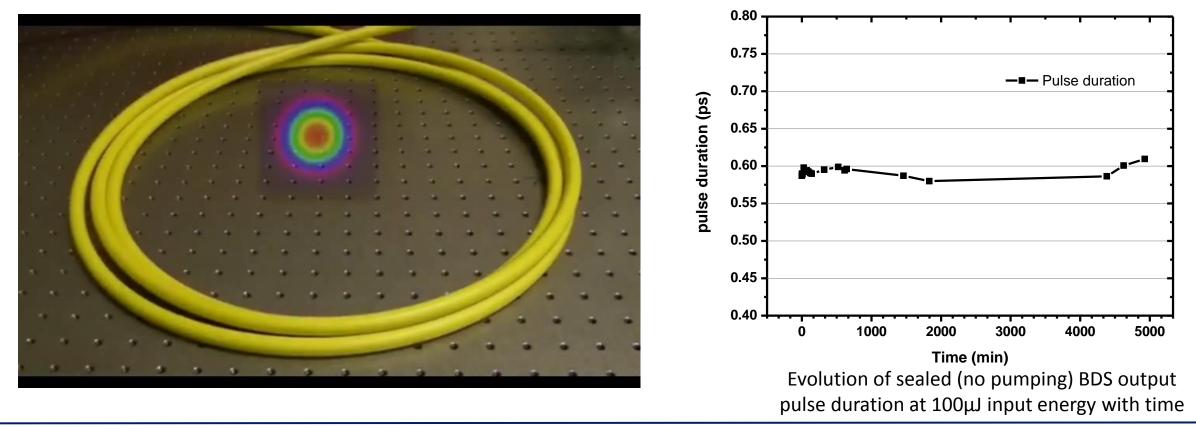
3D design of the 2nd PMC beam delivery system incoupling module (left) and specification of the integrated fiber (center) and optical micrograph of the first assembled prototype (right).

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880


• Design and fabrication



• Energy handling, pulse fidelity and beam quality


BDS transmission efficiency (Left), BDS output AC trace (middle), BDS output beam profil (right)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

• Mode quality with movement, pulse stability with sealed BDS

WP4 – Task 4.5: Design and fabrication of photonic microcell module with integrated coupling optics for fiber-delivery and interface with system integrator

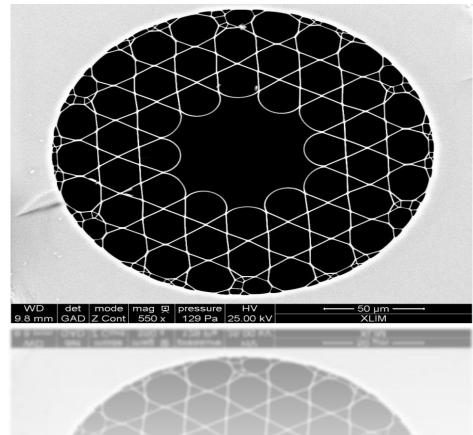
• Partners: GLO, XLIM, AMP

		i.	2	MB	ž i	9 9	2W	8	AN N	L IN	M12	M13	g M	M16	M17	M18	MIS WIS	M21	M22	M23	N24 N25	M26	M27	M28	M29	M30
	WP4 - Photonic components for pre-and-post-pulse conditioning		A	44.1		M4.2	:	M4.3			M4.4 M4.5		M4.	M4.8							4.10 4.11					
T4.1	Design of grating compressors										M4.0		~~~~	M4.9												
T4.2	Development of a lithography process for the fabrication of pulse compression gra-	ating																								
T4.3	Development of an etching process for the fabrication of optical components																									
T4.4	Fabrication and characterization of photonic microcell (PMC) module		-	D	4.1						D4.2				c I	4.3										
T4.5	Design/Fabrication of photonic microcell module with integrated coupling optics																			D	.4				j D4	4.5
T4.6	Design and Fabrication of polarization maintaining hollow-core photonic crystal																			D	4.6				D4	4.7

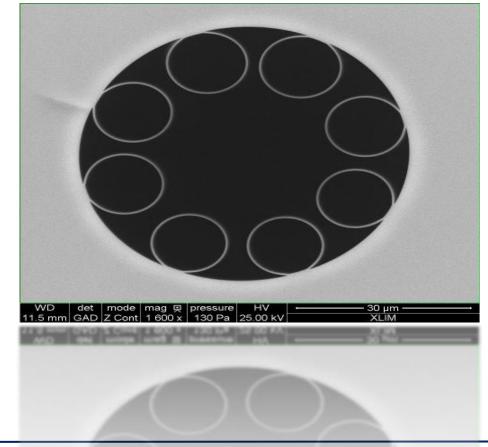
- Achievements...
 - End-termination design undertaken
 - End-user requirement definition ongoing
- Deviations and proposed corrective actions...
 - NA

WP4 – Task 4.6: Design and fabrication of polarization maintaining hollow-core photonic crystal for ultra-high energy pulse delivery

• Overview, XLIM, GLO

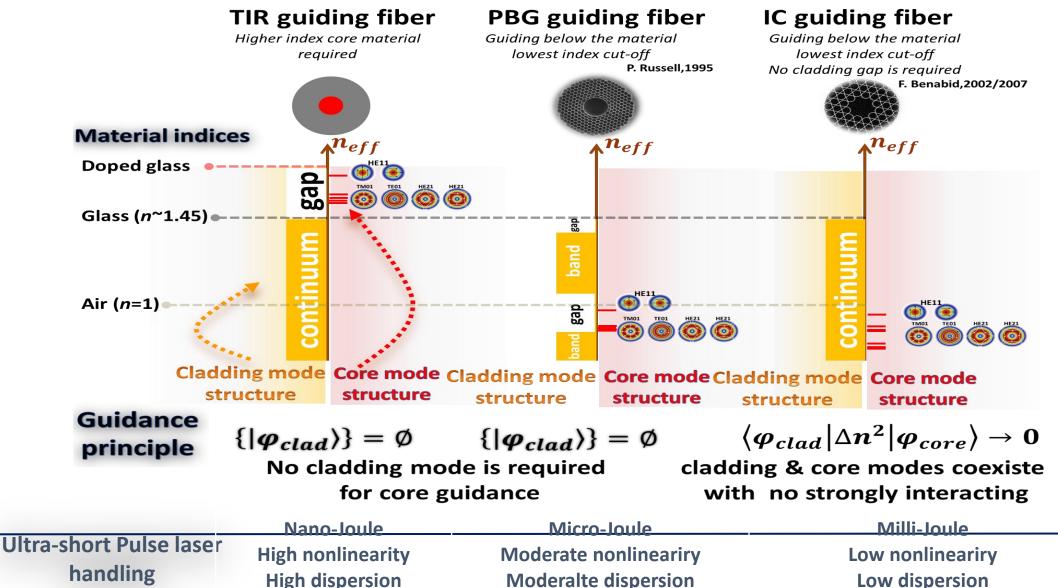

		W	N	8	€ ¥	99	5W	a a	M10	M11	M13	M14	M15	M16	M17 M18	M19	M20	M22	M23	M24 M25	M26	M27	M28	MB0 MB0
	WP4 - Photonic components for pre-and-post-pulse conditioning		N	14.1		M4.2	м	4.3		M4			M4.7	M4A M48						M4.10 M4.11				
T4.1	Design of grating compressors									M4			1	W4.9										
T4.2	Development of a lithography process for the fabrication of pulse compression gra	ting																						
T4.3	Development of an etching process for the fabrication of optical components																							
T4.4	Fabrication and characterization of photonic microcell (PMC) module			D4	.1					04	.2				D4.3									
T4.5	Design/Fabrication of photonic microcell module with integrated coupling optics																			D4.4				D4.5
T4.6	Design and Fabrication of polarization maintaining hollow-core photonic crystal																			D4.6				D4.7
	_																							

- Achievements...
 - Two fiber designs explored (transmission loss: new records)
 - Kagome fiber parameters with PER=21 dB
- Deviations and proposed corrective actions...
 - NA


HIPER DTABLE OF CONTENTS | Aachen | 27 & 28 March 2017

KAGOME LATTICE

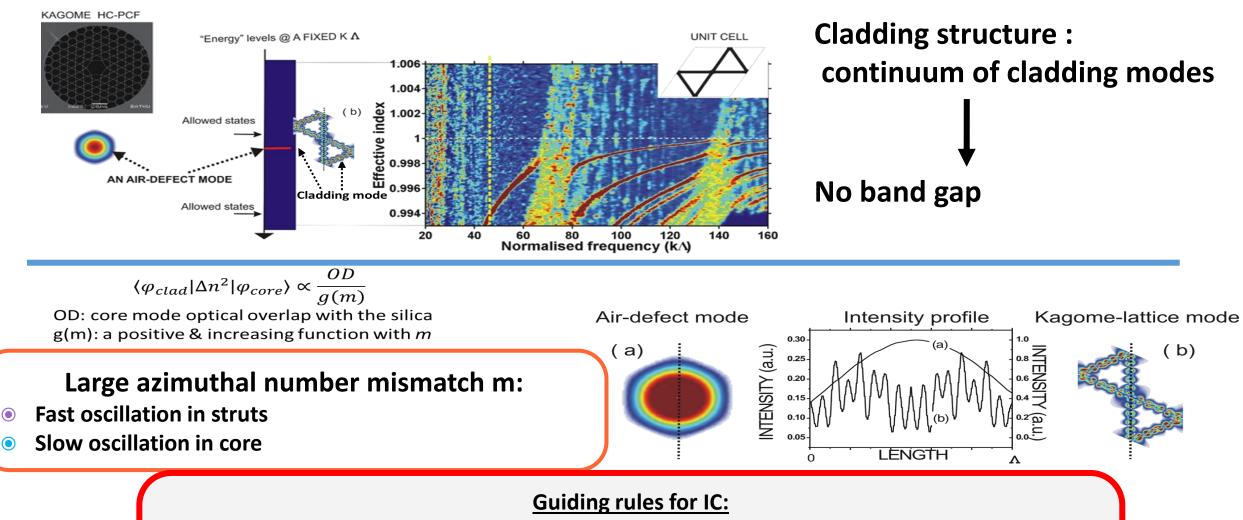
TUBULAR AMORPHOUS LATTICE



Consortium Meeting | Aachen | 27 & 28 March 2017

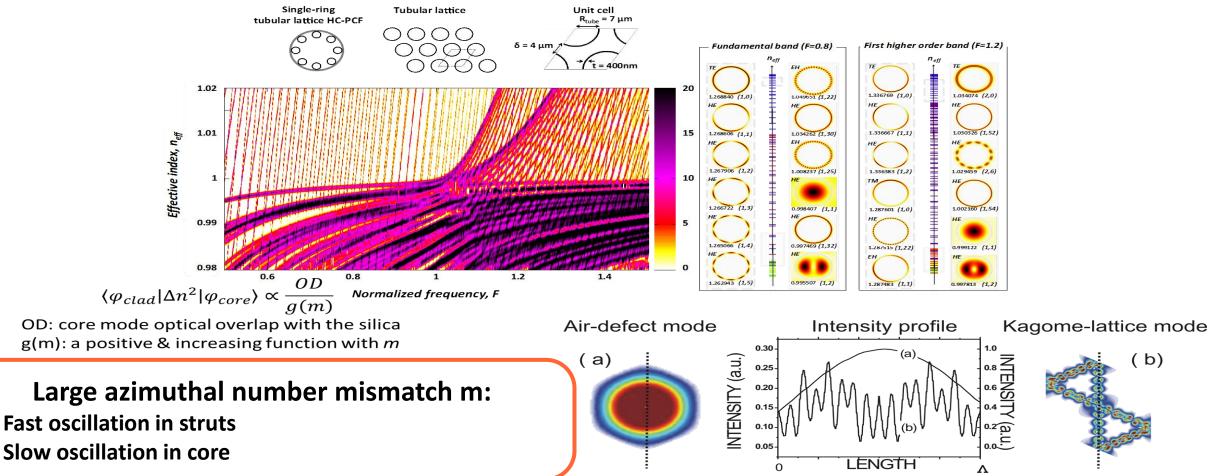
PHOTONICS PUBLIC PRIVATE PARTNERSHIP

FIBER OPTICS: THREE GUIDANCE MECHANISMS



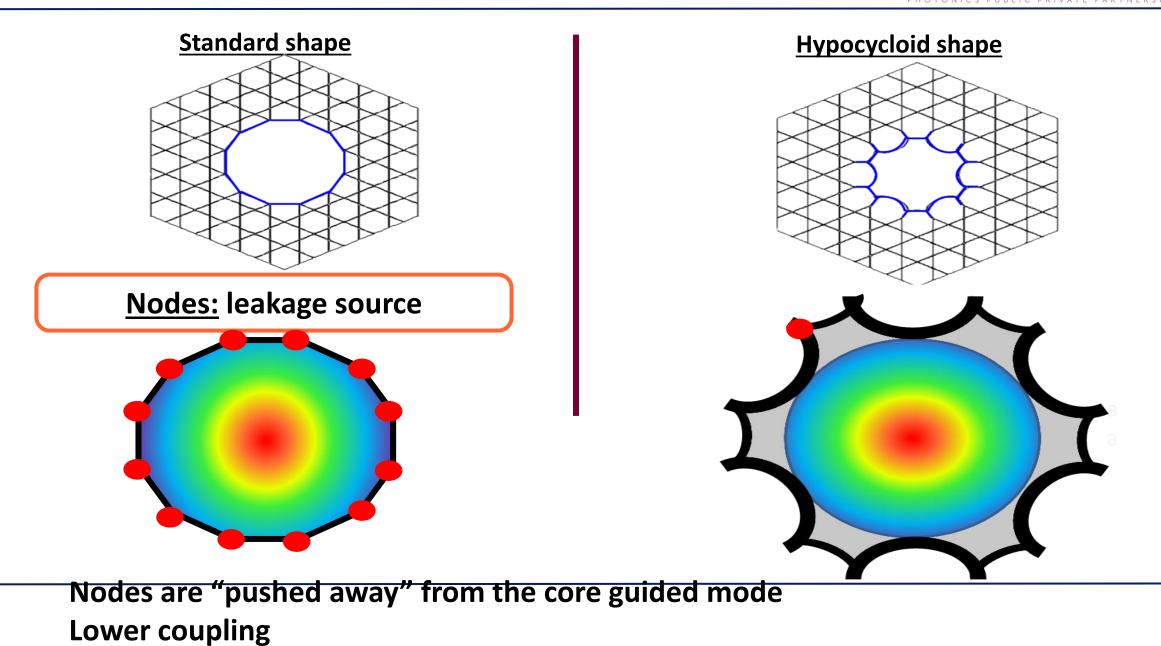
Consortium Meeting | Aachen | 27 & 28 March 2017

INHIBITED COUPLING MECHANISM


A cladding structure that favourably support high "azimuthal-number"-modes. E.G. a cladding with elongated <u>thin</u> strings with <u>no bends or corners</u> and made of a dielectric material.

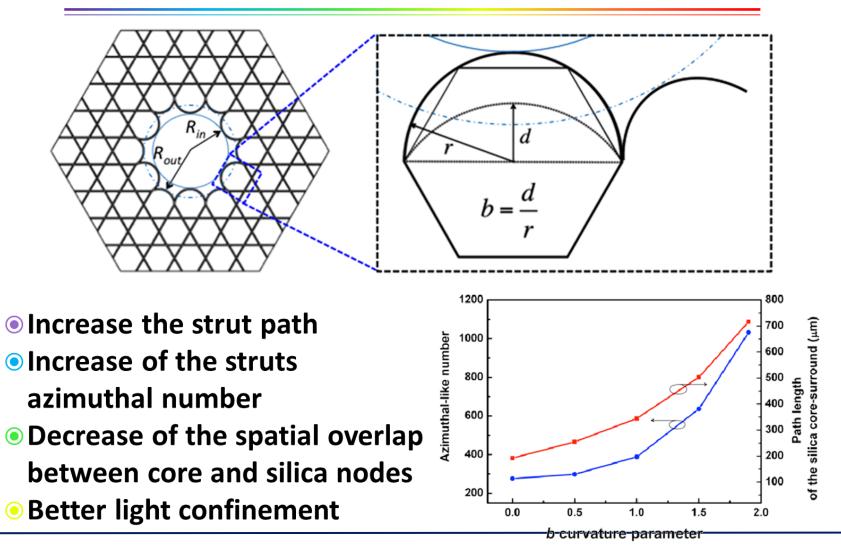
PHOTONICS PUBLIC PRIVATE PARTNERSHIP

NHIBITED COUPLING MECHANISM



Guiding rules for IC:

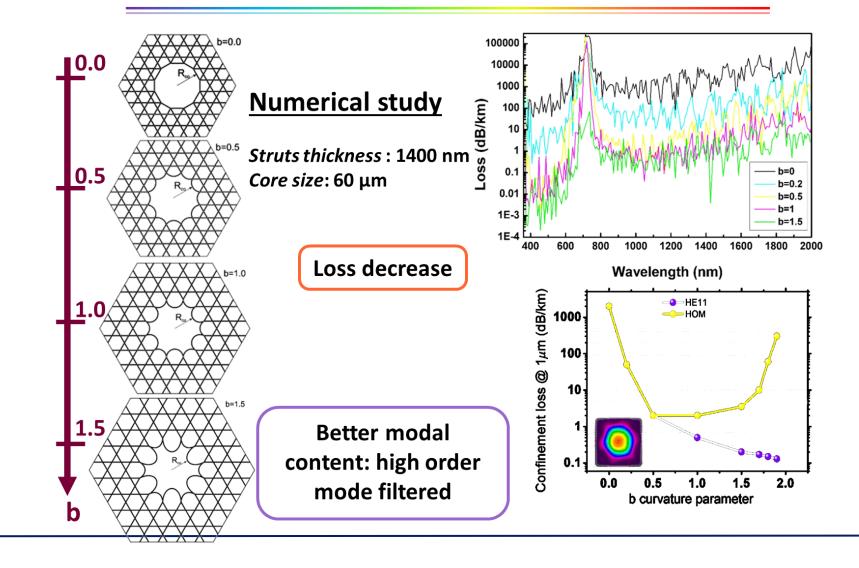
A cladding structure that favourably support high "azimuthal-number"-modes. E.G. a cladding with elongated <u>thin</u> strings with <u>no bends or corners</u> and made of a dielectric material.



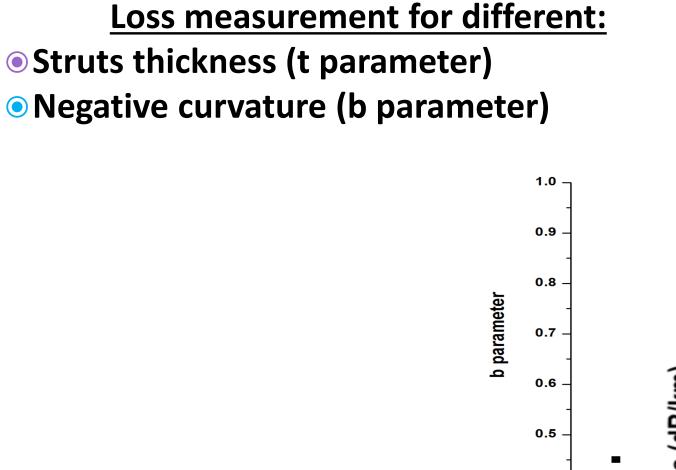
Consortium Meeting | Aachen | 27 & 28 March 2017

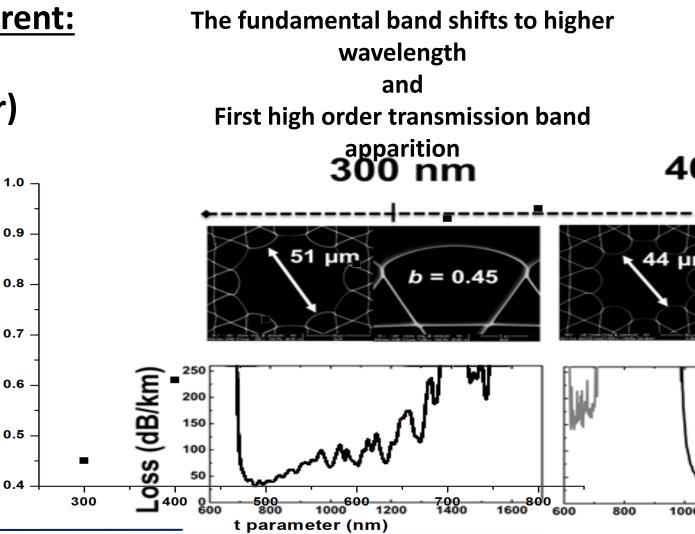
HOTONICS PUBLIC PRIVATE PARTNERSHIP

b PARAMETER : MISMATCH ENHANCEMENT

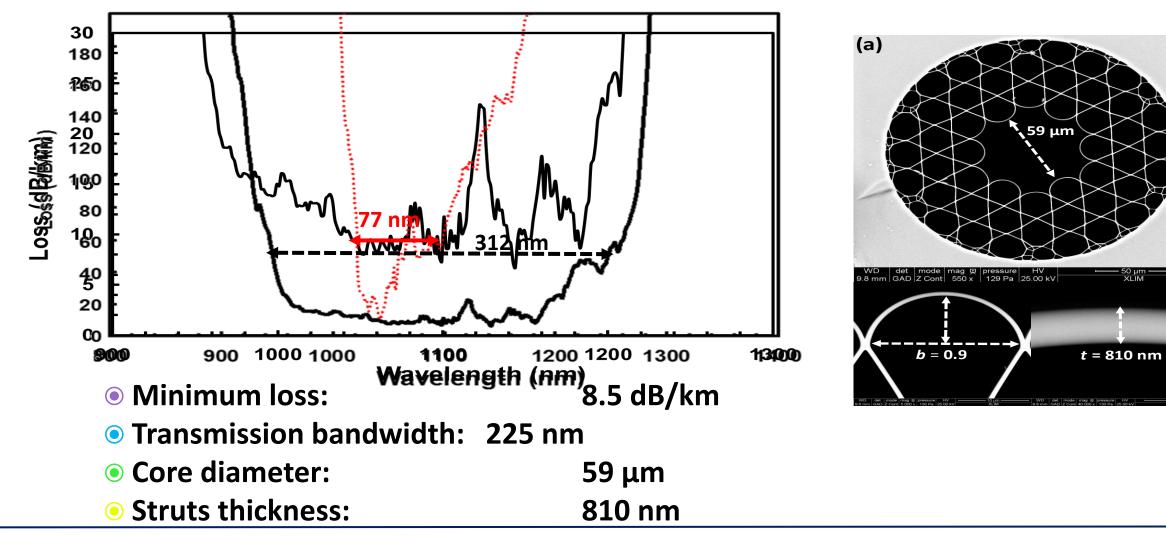


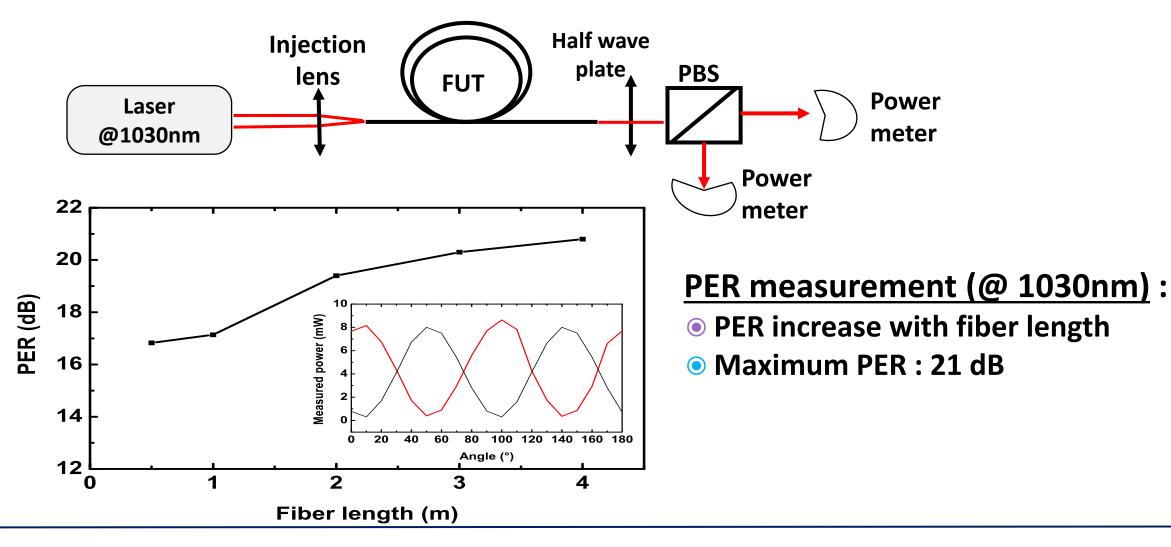
PHOTONICS PUBLIC PRIVATE PARTNERSHIP

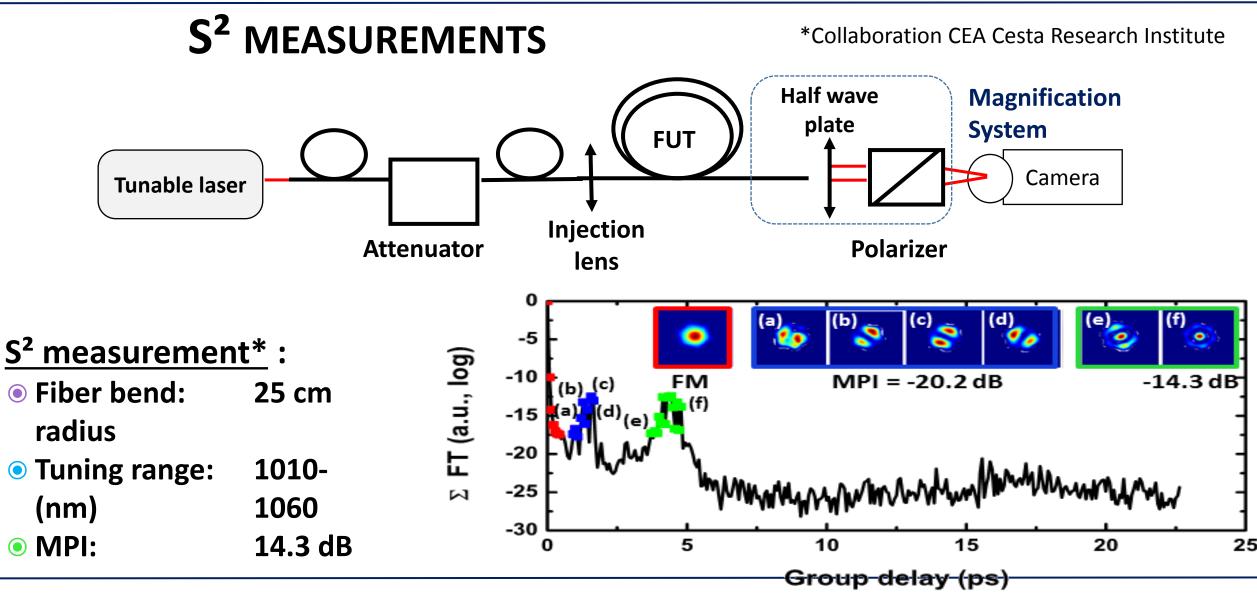

b PARAMETER



SYSTEM EXPERIMENTAL STUDY



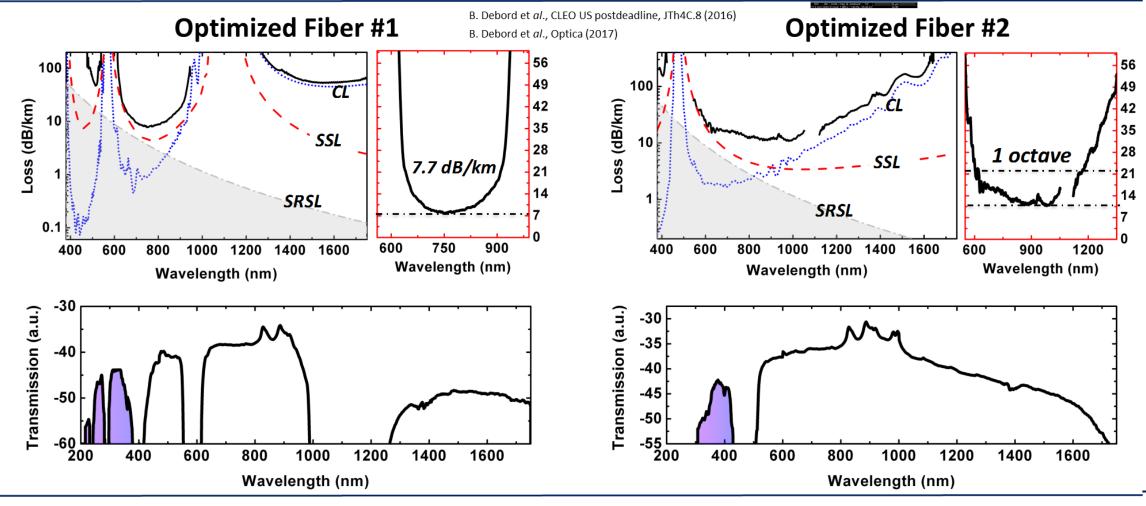

STRUCTURE AND RECORD LOSS



PER MEASUREMENTS

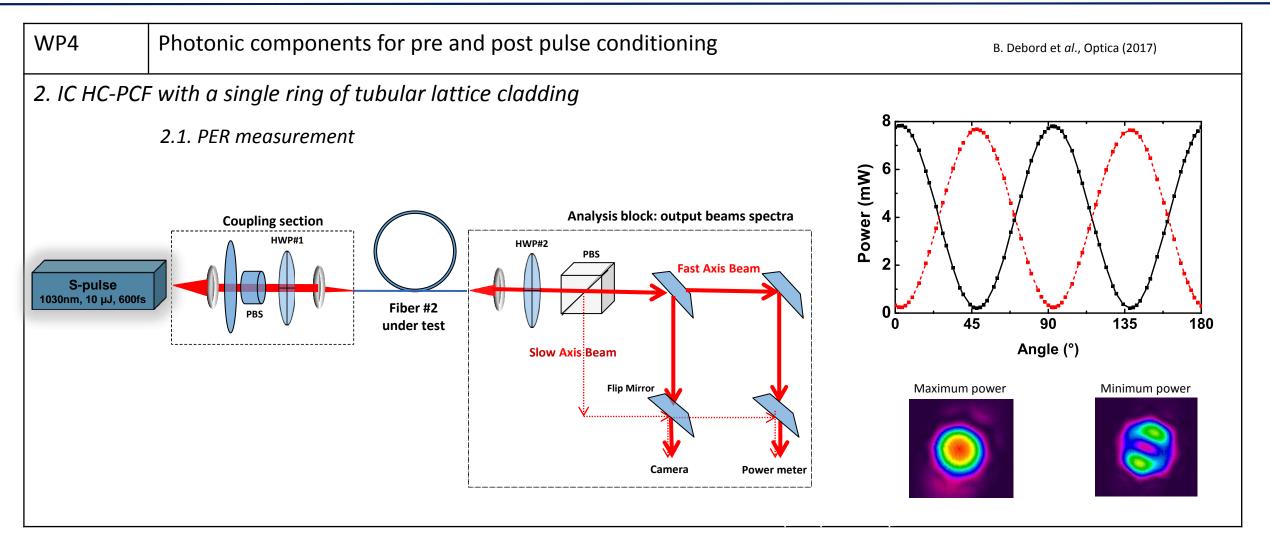
Consortium Meeting | Aachen | 27 & 28 March 2017

BEND LOSS MEASUREMENTS 1000 1200 2cm-1L 5cm-2L 6 7.5cm-3L 6 10cm-8L **Constant radius** Bend Loss (dB/turn) 20cm-4L of curvature 2 $R_{c} = 2.5 \ cm$ $R_c = 5 \ cm$ $R_c = 20 \ cm$ Bend loss at 1030 nm (dB/turn) 2.5 2.0 1000 1200 1.5 Wavelength (nm) Bend loss study : 1.0 • Fiber length: 10 m 0.5 • Bend radius: 2.5-20 cm 0.0 22 **Bend Radius (cm)**



Consortium Meeting | Aachen | 27 & 28 March 2017

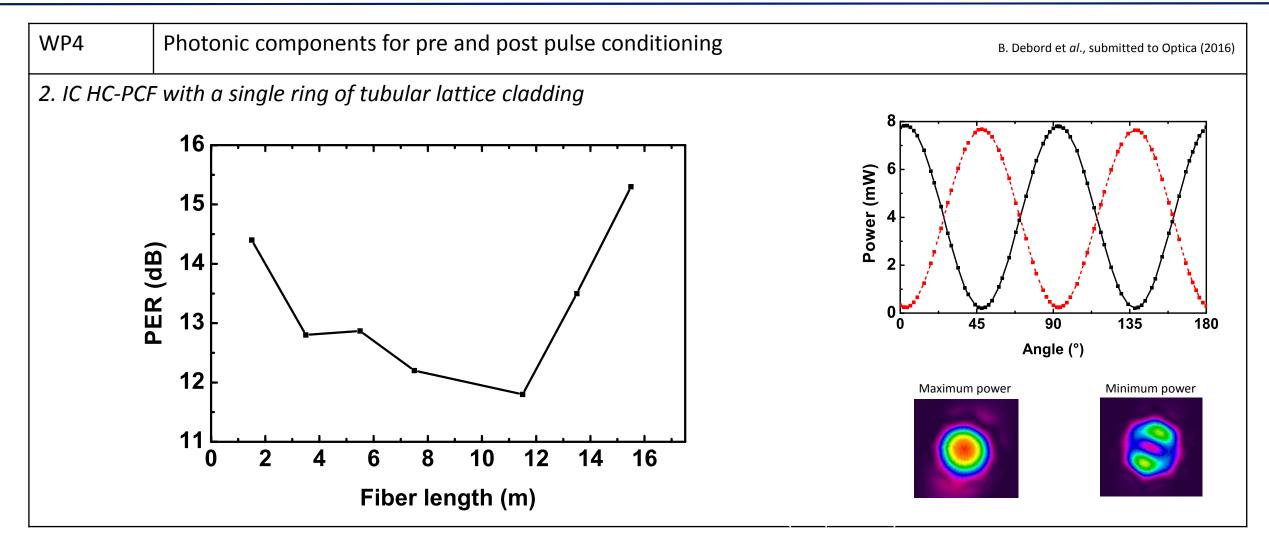
HOTONICS PUBLIC PRIVATE PARTNERSHIP


DESIGN #2: TUBULAR LATTICE

COASOFTINT MARIE TIAgenerStuttgartar13709/2016

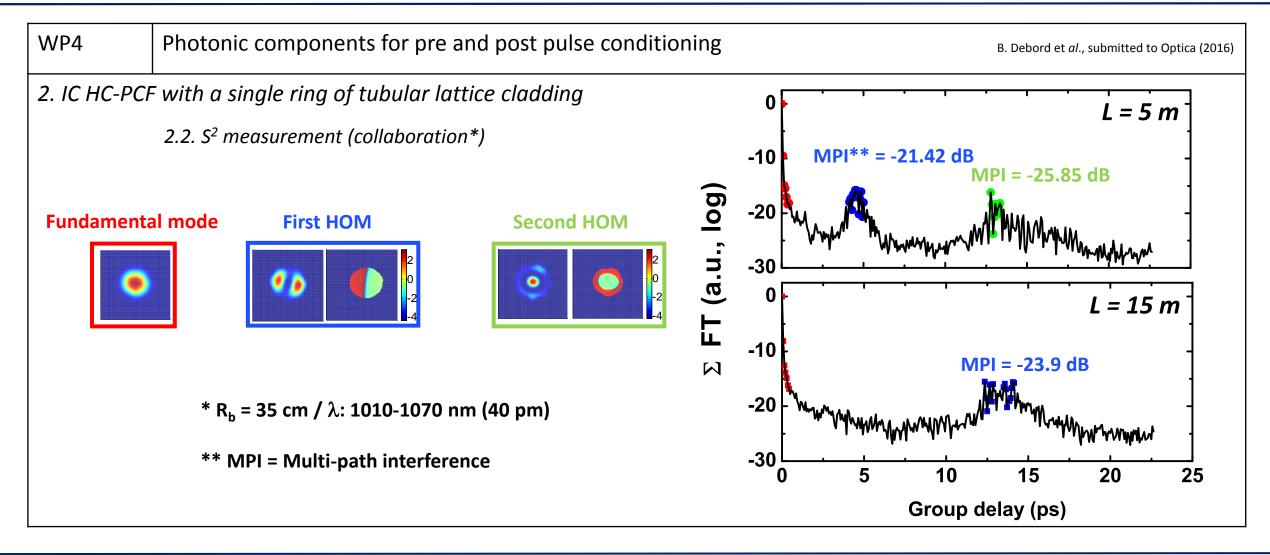
PHOTONICS²

PHOTONICS PUBLIC PRIVATE PARTNERSHIP



PERDIA

COASOFTINIA Wie Etingcher Stuttgart Mar 1/3/09/2016


PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Consortium MeteetingcherStuttgartMar13709/2016

HOTONICS PUBLIC PRIVATE PARTNERSHIP

WP4 – The next six months...

- 1. High avg power capability for beam delivery (T4.4)
- 2. End-termination spec definition & design (T4.5)
- 3. Investigation of the modal properties of the two IC fibers (T4.6)
- 4. Test of energy handling capabilities of the IC HC-PCF with a single ring of tubular lattice cladding (T4.6)
- 5. Start to set a home-made S^2 set-up (T4.6)
- 6. Continue on the fabrication of IC HC-PCF (T4.6)
- 7. Preliminary characterization of the polarization properties of both fiber designs (T4.6)

Fulse compressors - Pulse compressor gratings are well spread and implemented in most of the high-power laser a systems where the non-linearities can be detrimental due to the high-peak powers in the sub-ps regime. In fact, to circ these issue the chirped pulse amplification (CPA) technique is used. The pulses are first stretched to longer pulses (from or even ns pulses), then amplified and recompressed to the initial pulse duration. However, the overall losses of the co MOPA system can be limited by the performances of the stretcher and compressor elements. For instance, the lost compressors device can be typically in the order of 15-20% (4-passes) if the diffraction efficiency is between 95-96%. This case of transmission compressor gratings made of pure fused-silica as demonstrated by Clausnitzer et al.49 with deep gratings and can be commercially provided by Ibsen Photonics, Jenoptik, Alrad, etc....

Oon the other hand fully dielectric grating compressors operating in reflection can exhibit higher diffraction efficiency as high LIDT. Therefore, they represent the most appropriate approach for high-power ultrafast laser systems. Several group ^{52 53} have been reporting on the potential of these elements in a pulse compression architecture.

Within HIPERDIAS, the pulse compressor gratings which will be developed should target efficiencies of higher or equal the over a broad spectral bandwidth (10 nm) as well as high LIDT (in the order of the J/cm² at the sub-500 fs regime). AN USTUTT have built a strong experience within this domain within the last years and have very recently, successfully repo grating mirrors with a diffraction efficiency of 99.7% at 1060 nm wavelength which can lead to an overall efficiency compared by the second seco efficiency of ~98.8%. At a wavelength of 1030 nm, the devices were tested as pulse-compressors, and up to 96.3% over passes through the gratings i.e corresponding to >99% diffraction efficiency per single-pass) was demonstrated. The LI measured with 2.95 J/cm2 for 12 ns pulses. Based on this experience the further development of these devices will be within HIPERDIAS to implement them within the high average power laser in order to ensure a high overall efficiency complete MOPA chain. Furthermore, the approach followed within HIPERDIAS shall exhibit increased fabrication tolera the grating parameter (groove-depth, duty-cycle, etc...) to allow high-yield and efficient implementation in commercia systems

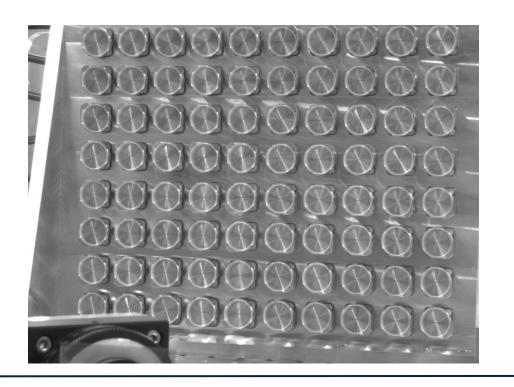
Consortium Meeting | Aachen | 27 & 28 March 2017

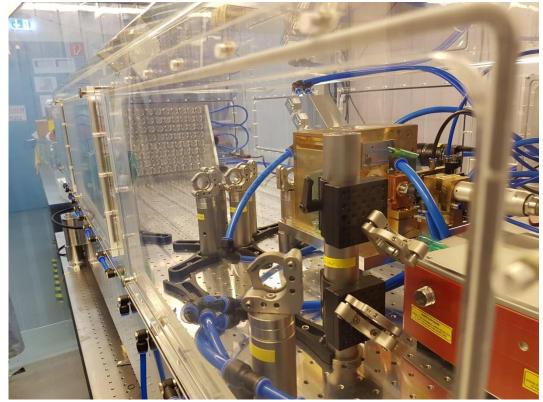
WP5 Thin-disk Multi-pass Booster

Marwan Abdou Ahmed

USTUTT

Work Package 5 Overview

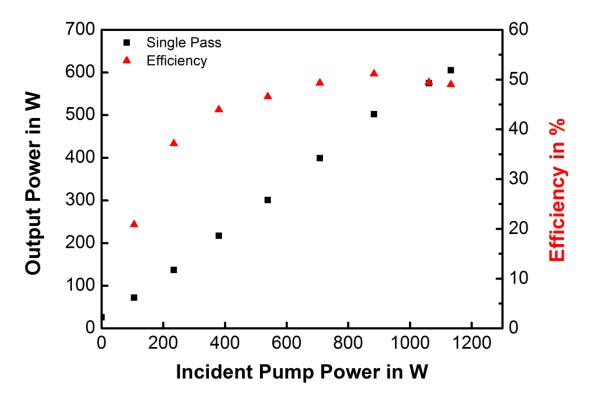

- Main objective: Building multipass amplifier with Seed Source from AMP
 - Task 5.1 Design of the thin-disk multipass amplifier (USTUTT, Due M06)
 - Task 5.2 Amplifier with 500 W, 1 MHz, sub-500 fs (USTUTT, AMP, Due M22)
 - Task 5.3 Second and third harmonic generation (USTUTT, AMP, DUE M28)
 - Task 5.4 Integration of Yb amplifier (AMP, USTUTT, Due M28)
 - Task 5.5 Demonstration of a 1 kW, sub-1ps laser system (USTUTT, AMP, M38)



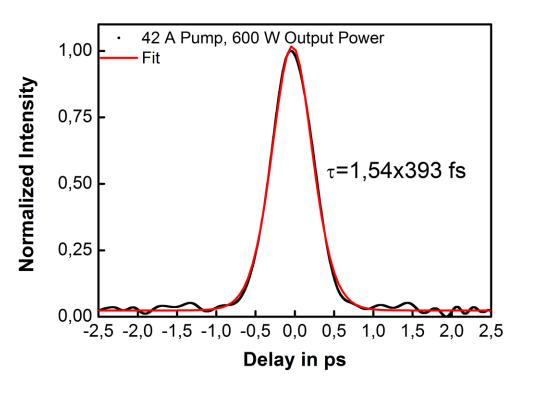
WP5 – Task 5.2: Assembly and characterization of a Yb:YAG thin-disk multipass amplifier (USTUTT, AMP, Due M22)

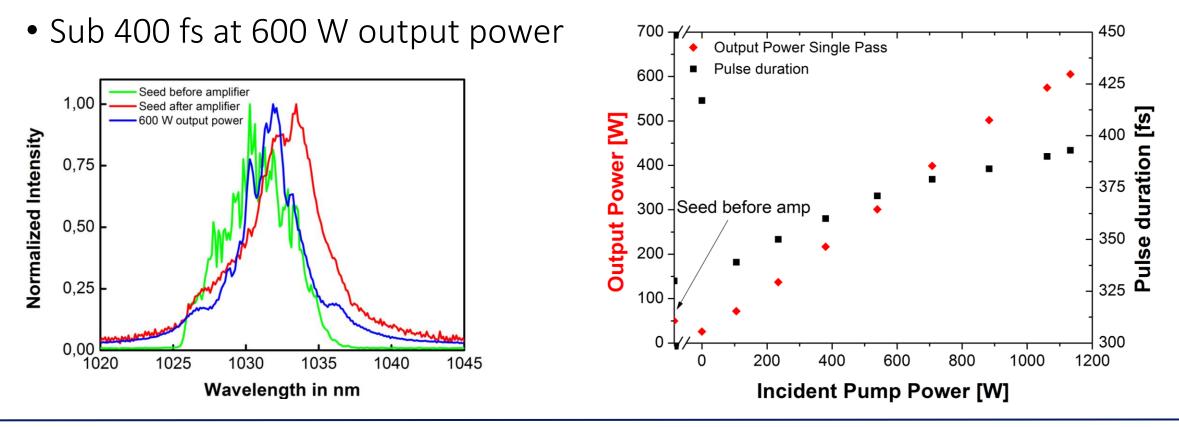
• All optical and mechanical parts designed in Task 5.1 ordered, delivered and assembled

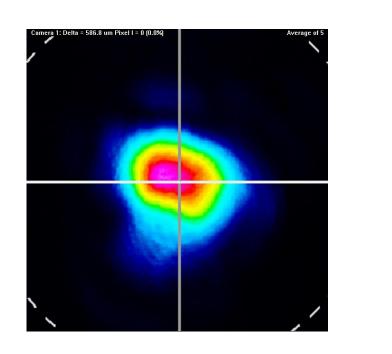
Consortium Meeting | Aachen | 27 & 28 March 2017

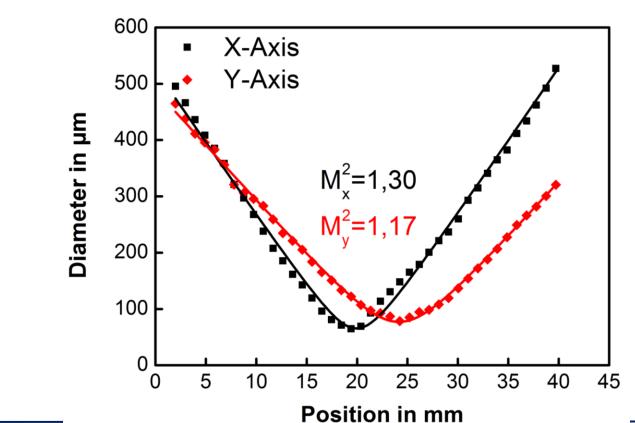


Setup 80 mirror TFP array RMP Thin-disk module **Pump diodes M**₁ 969 nm, 2 kW M₂₀₋₂₁ TFP λ**/2-plate** Satsuma

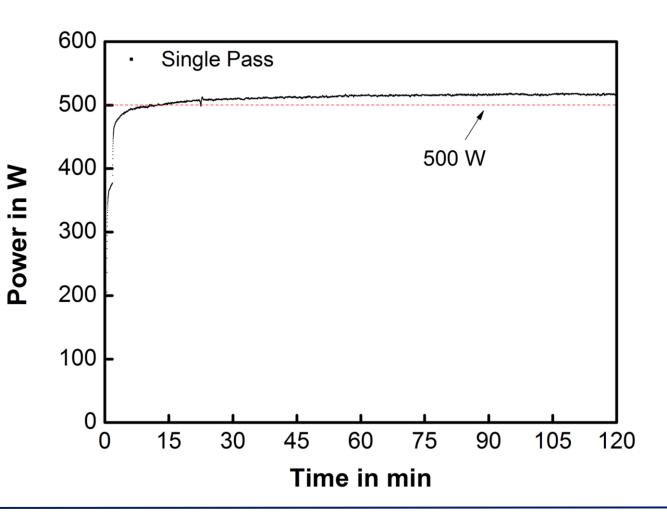

- 50 W Seed Power, 330 fs pulses, 1.25 MHz
- Measured output power in single-pass: 605 W (deliverable goal: 500 W)
- Maximum pulse energy (1.25 MHz): 484 μ J
- No pulse-picking implemented yet

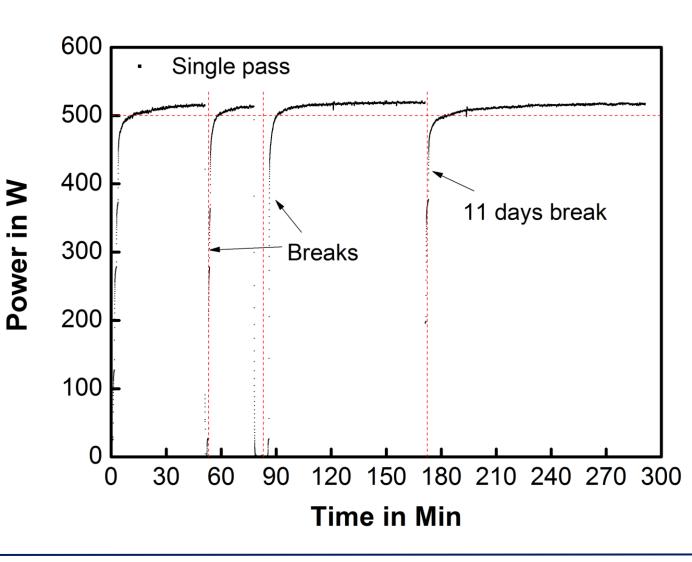

- 330 fs pulse duration of seed laser
- Measured pulse duration at 600 W power: 393 fs
- Peak Power: 1.1 GW


Slight spectral narrowing → very slight temporal broadening



- Beam profile at full output power: only slight aberations visible
- M²<1.3

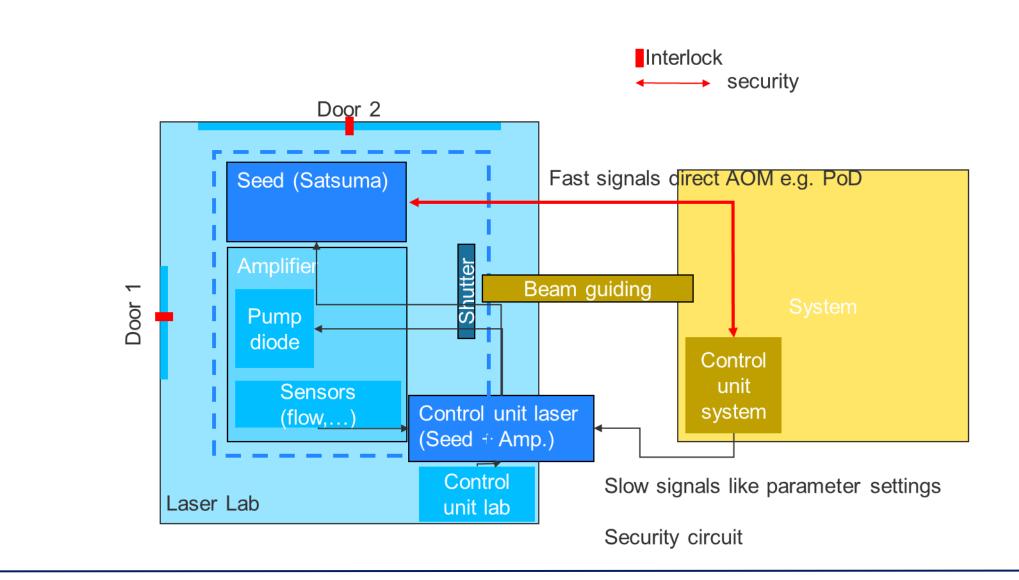



- Thanks to very good thermomechanical properties system is very stable after thermalization
- Measurement starting around 500 W
- No power drops observed

- Reproducable behaviour after breaks
- No realignment after 11 days break

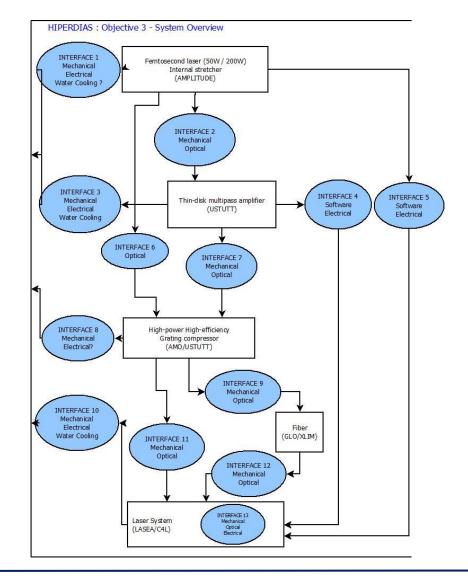
Task 5.3 Frequency Conversion (USTUTT, AMP, DUE M28)

- In progress...
- Designed and most components delivered
- Assembly starts soon
- more to report at next CM.


Task 5.4 Integration of multipass amplifier(AMP, USTUTT, Due M28)

- Laser will be placed in a separate room
- Beam guided to workstation (by LASEA)
- Development of controls, interfaces ongoing.
- Room currently being equipped

PHOTONICS PUBLIC PRIVATE PARTNERSHIP



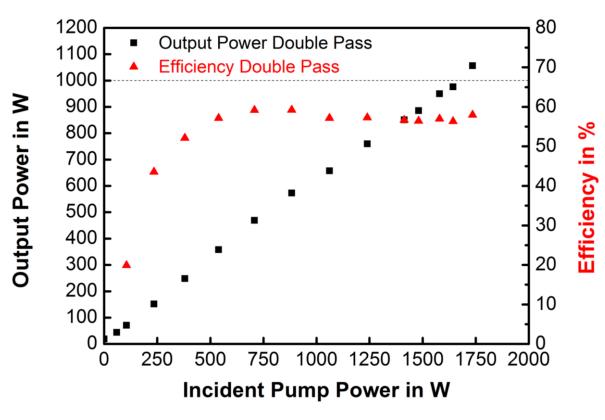
PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Nr	Partners involved	Type of interface		
1	USTUTT <> AMP	MECHANICAL/ELECTRIC AL/WATER/SAFETY		
2	AMP <> USTUTT	MECHANICAL/OPTICAL		
3	USTUTT <> USTUTT	MECHANICAL/ELECTRIC AL/WATER		
4	USTUTT <> LASEA/C4L	SOFTWARE/ELECTRICAL		
5	AMP <> LASEA/C4L	SOFTWARE/ELECTRICAL		
6	AMP <> (AMO-USTUTT)	OPTICAL		
7	USTUTT <> (AMO-USTUTT)	MECHANICAL/OPTICAL		
8	USTUTT <> (AMO-USTUTT)	MECHANICAL/ELECTRIC AL		
9	(AMO-USTUTT) <> (GLO-XLIM)	MECHANICAL/OPTICAL		
10	LASEA/C4L <> USTUTT/C4L	MECHANICAL/ELECTRIC AL/WATER/ <mark>SAFETY</mark>		
11a	(AMO-USTUTT) <> LASEA/C4L	MECHANICAL/OPTICAL		
11b	LASEA / C4L <> LASEA/C4L	MECHANICAL/OPTICAL		
12	(GLO-XLIM) <> LASEA/C4L	MECHANICAL/OPTICAL		
13	LASEA/C4L<> Scanner	MECHANICAL/OPTICAL/ ELECTRICAL/SOFTWARE		

Consortium Meeting | Aachen | 27 & 28 March 2017

Task 5.5 Demonstration of a 1 kW, sub-1ps laser system (USTUTT, AMP, M38)

- Planned after material processing with 500W
- Seed source:200 W system delivered by AMP



Consortium Meeting | Aachen | 27 & 28 March 2017

New preliminary results – Double pass

- 50 W Seed Power, 330 fs pulses, 1.25 MHz
- Measured output power in double-pass: 1056 W
- Maximum pulse energy (1.25 MHz): 845 µJ
- Further measurements (M², AC, ...) to follow
- Deliverable 1 kW (but with 200 W seed power in a later stage of the project)

WP5 – The next six months...

- Implementation of pulse picking (to be implemented, but concept worked in other system)
- Analysis of double-pass experiments (1 kW)
- Pulse compression experiments to go to even shorter pulse durations
- Integration task ongoing in parallel
- First frequency conversion experiments

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP5 - Deliverables

Deliverable title	Due date	Status		
D5.1 Design of the multipass amplifier	M06 – July 2016	Submitted		
D5.2 Thin-disk multipass amplifier with 500 W, 1 MHz, sub-500 fs	M22- November 2017	Not yet submitted, but already fulfilled		
D5.3 Demonstration of 200W green and 100W UV laser beams at 1MHz and sub- 500 fs pulse	M28- May 2018	Not yet submitted, work ongoing		
D5.4 Thin-disk multipass amplifier with 1000W, >=1MHz, sub-1ps	M38- March 2019	Not yet submitted, work ongoing, very confident		

• No deviations to report (we are a bit ahead of schedule 🙂).

CLASS LASER

See the light

Consortium Meeting | Aachen | 27 & 28 March 2017

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP6 System Development

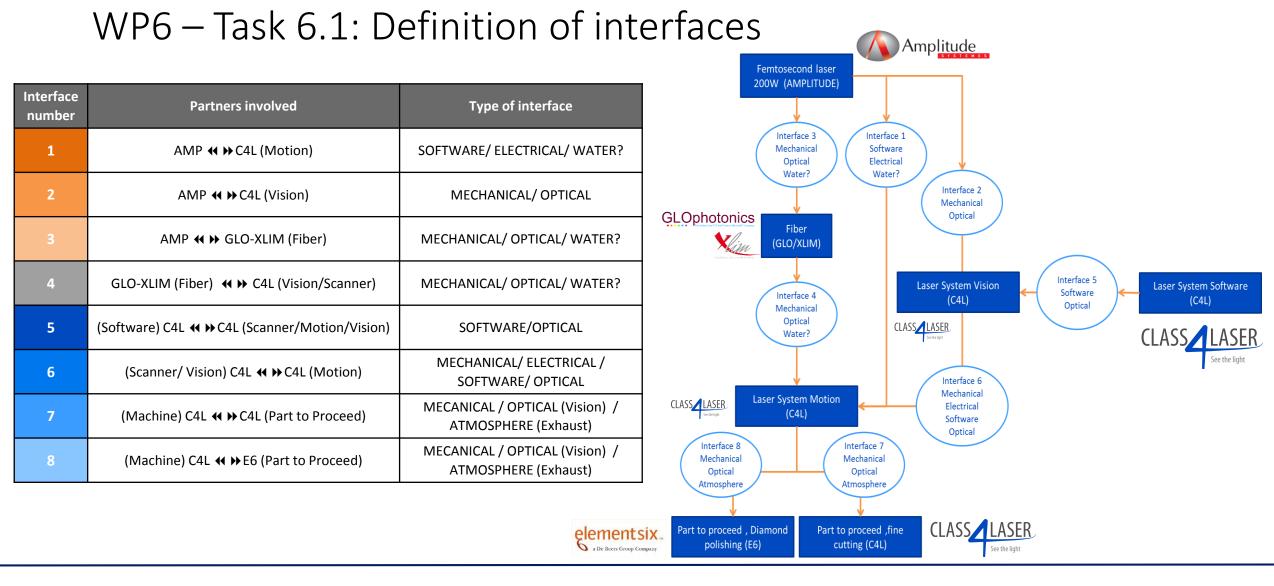
Noémie Dury

C4L

Work Package 6: AMP, BOSCH, C4L, LASEA, USTUTT

- Overview
 - define **interfaces** and system features (2D; 3D), **integrate lasers**, optics and scanner in system for evaluation and **proof of concept** and to define the provision of **demonstrator platform**.
 - the system must be able to be operated in **an industrial frame** for the planned applications within HIPERDIAS.
 - 2 systems are going to be developed on the basis of existing system at LASEA and C4L.
- Achievements
 - Interfaces have been defined and validated from all implicated partners.
 - User requirements have been defined and validated from all partners
 - Systems Design and Build up has been started
- Deviations and proposed corrective actions:
 - No deviations for the moment

WP6 – Task 6.1: Definition of interfaces


• Overview (AMP, BOSCH, C4L, LASEA)

- Information has been exchanged between partners to define the best the required interfaces from all involved partners. Interfaces means mechanical, optical, as well as electronics and user control interface. Deliverable 1.4 display the defined interfaces.
- Achievements...
 - Definition of interface has been completed. Deliverable 1.4 displays the defined interfaces.
- Deviations and proposed corrective actions
 - No deviations for the moment

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP6 – Task 6.1: Definition of interfaces

Type of interface	Description	AMP : Laser 50W	USTUTT : Booster]			
Mechanical	Dimensions	0.5x0.33x0.12 m	2x1x0.7m				
	Weight	80 kg	400 kg	_			
	Material	Aluminum	Alu/Cu/Steel	_			
	Cautions	Heavy, To not shock	Very heavy	_			
	Fixings	Clamped feets or screwed baseplate	3 points mounting feet				
	Mechanical drawing file	Yes, is provided with the	NO	-			
	(YES/NO)	manual		Optical	Output wavelength	1030 nm	N/
Electrical	Voltage	N/A	N/A		Output pulse duration	350 fs	N/A
	Max current	N/A	N/A		Output beam size (1/e2)	2.5mm	N/A
	Power	N/A	N/A		Output max average power	75W	N/A
	PSU: external/to integrate?	N/A	N/A		Output max peak power	200 MW	N/A
	Electrical drawings files	N/A	N/A		Output beam height (mm)	73mm	N/A
Software	Protocol of communication	N/A	N/A	-	Appropriate safety googles	References will be provided	N/A
	Table of commands file	N/A	N/A		Input wavelength	N/A	103
					Input Pulse duration	N/A	350
					Input Beam size (1/e2)	N/A	4 m
					Input max average power	N/A	75 \
					Input max peak power	N/A	200
					Input beam Height (mm)	N/A	Flex
					Appropriate Safety googles	N/A	N/A
				Water	Diameter of pipes	N/A	N/A
					Flow rate	N/A	N/A
					additive	N/A	N/A
					Chiller?	N/A	N/A

WP6 – Task 6.2: Definition of laser & optics sizes; optics specification (incl. fiber)

- Overview (AMP, C4L, GLO, LASEA)
 - The user requirements have been discussed between involved partners and **trials have been completed** from the end user in order to give the most precise information to the laser and system manufacturer. Thanks to these trials and discussions, **specification could be established and described in D1.2 and 1.3.**
- Achievements...
 - Users requirements have been mostly defined. Final specifications are due in the next 3 months. Definition of user requirement are summarized in D1.2 and 1.3
- Deviations and proposed corrective actions
 - No deviations for the moment

WP6 – Task 6.2: Definition of laser & optics sizes; optics specification (incl. fiber) – **System 1 & 2**

- Achievements...
 - Handle the **very high laser power** without damage to optical elements and without influence of laser power variations on the phase front distribution.
 - suitable for pulse durations down to **1 ps at a pulse energy of 0.5 mJ**
 - Handle the high average power, the beam should exhibit a large diameter (e.g. >10 mm). All apertures must be larger than twice the beam passing the aperture to avoid diffraction.

WP6 – Task 6.2: Definition of laser & optics sizes; optics specification (incl. fiber) – **System 1**

- Achievements...
 - Using a **large focal length** of the focusing device (e.g. 500 mm) may prove beneficial to achieve highest scanning dynamics with large incoming beam sizes.
 - presumably synchronization of laser performance (pulse energy, pulse repetition frequency) with scanner dynamics. Thus, fast and flexible triggering (ideal: pulse on demand) and fast power variation are necessary.

WP6 – Task 6.2: Definition of laser & optics sizes; optics specification (incl. fiber) – **System 2**

- Circular polarized beam
- TEM 00
- Rotation optic (for cutting)
- Galvanometer scanner (Intelliscan from Scanlab)
- 80 mm to 160 mm focal length
- Direct beam cutting optic
- Closed loop Vision System & topography (For Diamond)

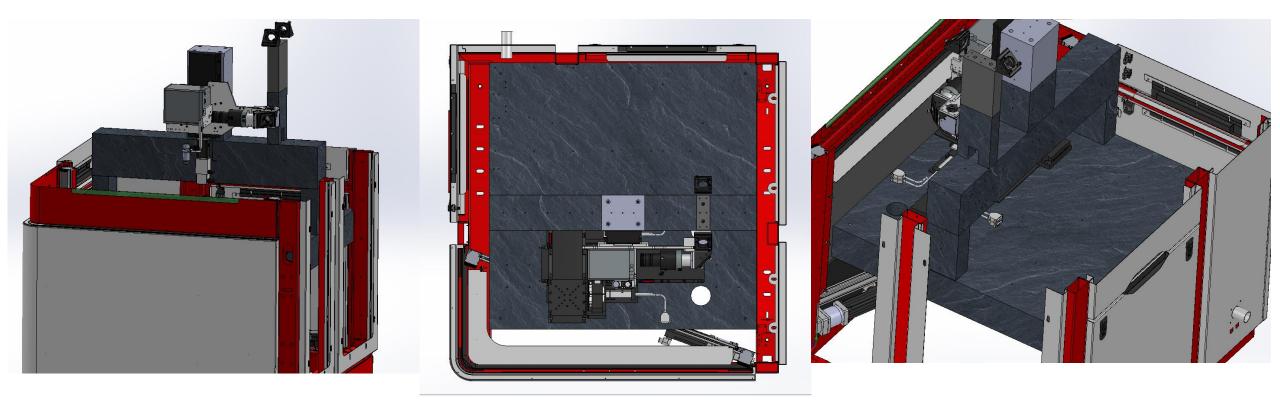
WP6 – Task 6.4: **System 1** layout and build-up

- Overview : (LASEA)
 - The design of the setup N°1 has been started by the design department of LASEA. Different components have been designed and assembled together such the granit, the gantry, mechanical axes, and all the necessary opto-mechanical parts.

Design of the system, choice of the different components :

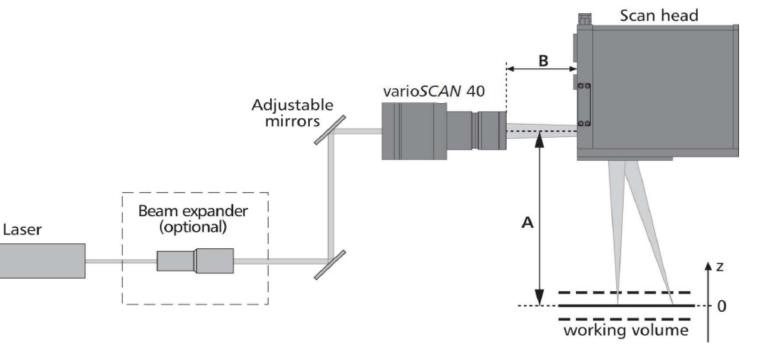
- <u>Deflecting unit</u>: Scanlab Intelliscan 30 + Varioscan (focusing before scanner)
- <u>Autoalignment system</u>: TEM-MESSTECHNIK Aligna
- <u>Beam expander</u>: really necessary ?, given the use of the Varioscan
- <u>Safety enclosure</u> : made of steel, 1.5mm thick, no window

 \rightarrow Waiting for more information regarding the risk of generation of X-rays, preliminary calculations announces important risks


• Spatial beam shaping : needed? \rightarrow under investigation, and for further discussions

WP6 – Task 6.4: System 1 layout and build-up

• Achievements: design of the system



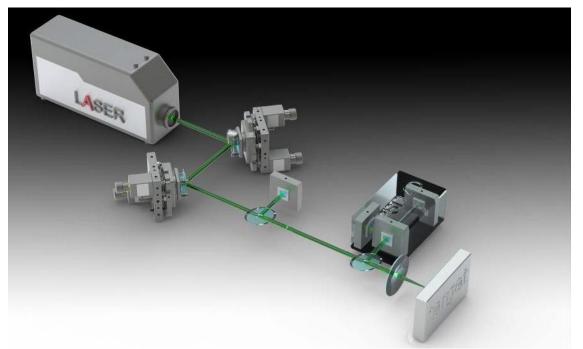
WP6 – Task 6.4: **System 1** layout and build-up

- Achievements: integration of Scanlab Head
- Max avg power : 1000 W
- Spot diameters : 50 65μm
- Max marking speed : ~4.5m/s
- Field of view : ~310 x 310 mm²

WP6 – Task 6.4: **System 2** layout and build-up

• Overview (C4L)

- The system n°2 layout have been **defined and designed**. The different components have been ordered and a large part of them have been delivered: granite, axes, optical table. **Granite and axes have been built-up**. Software is started. Optical system, most especially the scanning and vision system development have been started and are on going.
- More information are required concerning the **generation of X-Rays** and the required shielding for the foreseen intensity before starting the design / build up of the shielding.



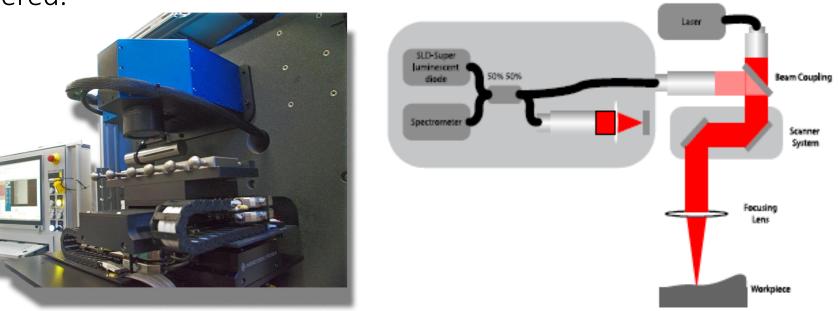
WP6 – Task 6.5: Integration of laser and optics

This task is at its very beginning. The two partners building systems #1 and #2 have started to work on the integration of laser (work on the interfaces, D6.1) and of the optic. Definition of optic as well as the ordering process is on-going and in tracks.

- Achievements : Auto-alignment system
- System 1
 - Sampling done with 1mW
 - Measurment resolution : < 1ms
 - Time to move mirrors : tens of ms
 - Often used to compensate air fluctuation (~10Hz)

WP6 – Task 6.4: System 2 layout and build-up

• Achievements



WP6 – Task 6.5: Integration of laser and optics

- Achievements: System 2
 - C4L has defined the interfaces required for the integration, the optical tables have partially defined, ordered and delivered. Remaining Optical components have been partially defined and ordered.
- Max avg power : 200 W
- focus diameter : $15 30 \,\mu m$
- Max scanning speed : ~3 m/s
- Max rotating speed: TbD
- Working field: ca. 80 x 80 mm

WP6 – The next six months...

- Order the remaining components for the systems
- Integrate optics and finalized the systems to be ready to welcome the lasers
- Start to integrate the lasers

WP6 – The next six months...

- Task 6.5: Integration of laser and optics System 1
- Achievements : Delivery planning

	janv-17	févr-17	mars-17	avr-17	mai-17	juin-17	juil-17	août-17	sept-17
Granit									
Axes									
Scanner head									
Auto-alignment									
Caméra									
Enclosure									
Beam shaping (?)									

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

WP6 - Deliverables

Deliverable title	Due date	Status
D6.1 Definition of interfaces (LASEA)	M12 – January 2017	SUBMITED
D6.2 Definition of optics constraints (USTUTT)	M15 – April 2017	

WP6 - Milestones

Milestone title	Due date	Status
MS16 System layout fixed	M12 – January 2017	ACHIEVED FOR BOTH SYSTEMS

Consortium Meeting | Aachen | 27 & 28 March 2017

WP8 Dissemination & Exploitation Planning

James Clayton KITE Innovation (Europe) Ltd

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

Presentation Content:

• Overview of Work Completed by M12

Objectives of this meeting:

- Upcoming Conferences and ensure that we follow the IP Management process.
- Training and look at ways of how the Consortium can excel at this Task.
- Interviews this will form more dissemination videos
- Exploitation Planning 1st Workshop
 - SQUADRON[™] Segmentation and Quality Requirement
 - PESTLE Analysis


Consortium Meeting | Aachen | 27 & 28 March 2017

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

HIPERDIAS – Overview at M12

- HIPERDIAS Website: <u>www.hiperdias.eu</u>
- Press Release
- Two project videos
- Communication Kit
- Initial Dissemination and Exploitation Strategy

Grant Agreement: 687880

Dissemination Activities / Management of IP

List of upcoming Conferences:

- Photonics 21 Annual Meeting in Brussels, Belgium: 28th and 29th March 2017.
- LPM 2017 in Toyama, Japan: 5th June to 8th June 2017.
- EMT 2017 in Grand-Saconnex, Switzerland: 22nd June 2017.
- CLEO[®]/Europe-EQEC 2017 in Munich, Germany: 25th June to 29th June 2017.
- LiM 2017. Lasers in Manufacturing Conference in Munich, Germany: 26th June to 29th June 2017.
- Any more...

Remember when disseminating Project Results to complete an IP Notification Form (e.g. Publications / Conference Abstracts / Invited Talks etc.).

+				
Pre-	Publication Intellectual Property Notification			
Lead Author				
Partner Name				
Title				
Reference	< <u>yymmdd</u> >/<1-n>/USTUTT e.g. 121106/1/USTUTT			
Submitted to	<name conference,="" etc="" journal,="" of=""></name>			
Expected date of pul	blication / conference			
I have reviewed the	contents of this submission and (select one of the options below)			
a. It does not contain any intellectual property capable of commercial application				
b. It does or may contain intellectual property capable of commercial application which the beneficiaries will seek to protect				
	ontain intellectual property capable of commercial application but will not seek to protect			

HIPERDIAS

I understand that by selecting an option other than (b) subject to the agreement of the HIPERDIAS Technology Transfer Panel, the Co-ordinator (University of Stuttgart) may file the publication with the European Patent Office to obtain a priority date. This will allow the publication to proceed while providing a period of 12 months for further consideration and review of the IP position.

Signed	
Date	

When signed, e-mail a pdf version of this form to the Central Project Office (hiperdias@kiteinnovation.com) along with the draft publication.

Dissemination Activities

Short Interviews:

An extended video outlining:

- 1. The aims of the HIPERDIAS Project
- 2. The roles and responsibilities within the Project
- 3. The potential applications
- 4. The importance the EU Funding

Min. 1 person per partner.

Interview questions:

General Questions - About the HIPERDIAS Project (All Partners):

- What is the HIPERDIAS Project about?
- What are the aims and objectives of the HIPERDIAS project?
- How is the Consortium going to achieve its aims and objectives?
- What are the potential end applications and their benefits?

Partner Questions (All Partners):

- What is your organisation/institution role within the HIPERDIAS Project?
- What does your organisation/institution hope to achieve from the HIPERDIAS Project?
- What are benefits of EU Funding to your organisation/institution?
- What are benefits of having partners from across Europe?
- What are the main challenges and risks within the project?

Questions about H2020 & Leading a H2020 Project (USTUTT):

- Why do you think the HIPERDIAS project was originally funded?
- Where did the concept of the HIPERDIAS Project originate from?
- Why is HIPERDIAS such an important Project?
- What makes a successful Consortium/Project?

Applications - (C4L, BOSCH & E6)

- What are the potential applications?
- What are the benefits of this application to stakeholders?
- What are the benefits of these applications to your organisation?

Training / Training Workshops (MS22)

- Training Workshop (2-3 Days)
 - Location/Venue
 - Collaborate with other EU-Funded Projects...
 - TresClean Coordinated by UNIPR. <u>www.tresclean.eu</u>
 - HiperLAM Coordinated by ORBTX. <u>www.hiperlam.eu</u>
 - Dates... October/November 2017
 - Target Audience... PhD Students
 - Numbers / Speakers... 50+
 - Budget... 20-30K Euros
- Exchange Opportunities / Short Secondments: Knowledge Transfer between Partners.

Example from the MESO-BRAIN / VISGEN Project

Exploitation Planning

Recap:

- **Research:** Further research opportunities (Horizon 2020 e.g. ICT 30 Photonics KET).
- **People:** Career Pathways (PhD Students / Post-Docs). MS22 Training Workshop / Exchange Opportunities.
- **Product and services:** SQUADRON[™] Approach

A) Where are	we now?	B) Where are we goin	g?		C) How do	we get there?	•
PROCESS	1.	2.	3.	4.	5.	6.	7.
ELEMENT	Segmentation – defining market segments for focused development	Q uality Requirements	Attractiveness	Deliverables	Ranking	O perationalising	New Income Streams
H2O2O PROPOSAL ELEMENT	Concept & Impact	State of the Art (SOA) & Beyond	Impact	Scientific 8 Technological Methods		osal document will e to contribute	Post Project

(The SQUADRON is Trademark of Kite Innovation (Europe) Ltd)

Exploitation Planning – Segmentation / Quality Attractiveness

"Segmentation is a marketing strategy that involves dividing a broad target market into subsets of consumers who have common needs and desires as well as common applications for the relevant goods and services".

The **Quality Requirements** are the tech. specification for the identified products and services.

A) Where are	e we now? B) Where are we going?			now? B) Where are we going?			•
PROCESS	1.	2.	3.	4.	5.	6.	7.
ELEMENT	Segmentation – defining market segments for focused development	Q uality Requirements	A ttractiveness	Deliverables	Ranking	O perationalising	New Income Streams
H2020 PROPOSAL ELEMENT	Concept & Impact	State of the Art (SOA) & Beyond	Impact	Scientific 8 Technological Methods		osal document will e to contribute	Post Project

(The SQUADRON is Trademark of Kite Innovation (Europe) Ltd)

Exploitation Planning – Segmentation / Quality Requirements

	APPLICATION AREA				
PRODUCT / SERVICE					
Objectives 1 – High-power (kW-Class) ultrafast MOPA System	a) 3D silicon machining	B) Diamond Polishing	c) Fine cutting of metals and glasscutting (e.g. Sapphire)		
Objectives 2 – High efficient compressor gratings					
Objectives 3 – High-power high-efficiency fibre beam delivery system					
 BOSCH/LASEA – Laser machining system. Development of the 3D Si processing. 	WP1 Presentation Task 1.2 specification & Task 1.3 KPIs.				
2. E6 – Laser machining system.		WP1 Presentation Task 1.2 specification & Task 1.3 KPIs.			
3. C4L – Laser machining system.			WP1 Presentation Task 1.2 specification & Task 1.3 KPIs.		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

Exploitation Planning – Segmentation / Quality Requirements

			АРР	PLICATION A	REA	
PRODUCT / SERVICE	a)	Micro	b) Defractive	c) Ultra fast	d)	e)
	maching	Glass	optics	laser system		
	cutting		defractive			
			optic			
			elements			
AMP – New high power fs laser product and flexible laser control (existing and new	Х					
products – 50w and 200w laser).						
AMO – Further development of manufacturing process and know-how.			Х			
XLIM/GLO – Improve and industrialize hollow-core photonic Crystal-Fibre system	Х			Х		
USTUTT/AMO/AMP - Gratings. (ÙSTUTT) martek photnics spin off company.			X			
USTUTT/AMP – Thin disk Amplifier (>500W)	Х					

Consortium Meeting | Aachen | 27 & 28 March 2017

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

PESTEL Analysis

POLITICAL	ECONOMICAL	SOCIAL
Will the potential for exploitation of any elements of the project be affected by external policy? Or will the project have an impact on policy?	What factors will impact on the economic success of the project? What economic impact will the project have on the sector, the EU, globally?	Is the success of the project dependent on societal acceptance in any way? Will the success of the project have a societal impact?
 Exporting of Laser System across the EU. SWISS reform. Other EU Countries leave the EU. <i>KITE:</i> BREXIT and potential access to EU Funding 	US protectionism. Influences on trade across the world.	
	KITE: The strength of the pound sterling against the EURO	

Consortium Meeting | Aachen | 27 & 28 March 2017

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

PESTEL Analysis

What advances might affect the impact of the project? What innovative technologies might the project impact?

NVIR	ONME	INTAL
	×¥t	

What legislation/regulation might affect the impact of the project? Might the project have a legislative/regulatory impact national, EU, globally?

Are there any potential environment factors which might affect the impact of the project? What environmental advantages may accrue from the project?

KITE: *BREXIT* and potential access to EU Funding.

WP8 – The next six months...

- Preparation for the Review Meeting
- Process Interviews
- Training Workshop (MS22)
- Exchange Opportunities / Short Secondments
- Post Exploitation Analysis.
- Start working on D8.5 Communication Kit. Partners expectations...

WP8 - Deliverables

Deliverable title	Due date	Status
D8.1 Project website established	M03 – April 2016	Submitted
D8.2 Communication kit	M03 – April 2016	Submitted
D8.3 Video presentation of the HIPERDIAS project	M04 – May 2016	Submitted
D8.4 Draft Exploitation and dissemination plan	M12 – January 2017	Submitted
D8.5 – Communication Kit mid-term update	M24 – January 2018	Ongoing

WP8 - Milestones

Milestone title	Due date	Status
MS1 Press release	M01 – February 2016	Achieved
MS17 – Agreement on draft exploitation and use plan	M14 – March 2017	Achieved
MS22 First project workshop held	M18 – July 2017	Ongoing

WP9 Project Management

USTUTT supported by KITE

Emma Bowden

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

Work Package 9 Overview

- Change in personnel at Kite
 - Project Management Julie Devall has left, Emma Bowden has moved from other projects to HIPERDIAS
 - James Clayton is Kite Dissemination & Exploitation lead
 - Continue to use https://www.hiperdias@kiteinnovation.com for all email communications
- Consortium bodies established
- Communication processes set up
- Consortium meetings organised
- Currently coordinating 1st Periodic Review
- Grant Agreement Amendment awaiting approval of PO

WP9 – Task 9.1: Management and coordination of the project

- All due Deliverables have been submitted
- The next Deliverables are:

D#	Deliverable name	Lead	Diss. level	Μ	Due
D9.2	1 st Periodic Report	USTUTT	Confidential	14	Mar-17
D6.2	Definition of optics constraints	USTUTT	Confidential	15	Apr-17
D6.3	System layout	C4L	Confidential	17	Jun-17
D4.3	Report on fabrication and optical characterization of optimized gratings with single- pass diffraction efficiency >-99% over large spectral bandwidth (5-10nm) around 1030 nm	AMO	Confidential	18	Jul-17
D3.3	200-W, 500-fs>1-MHz laser (1)	AMP	Confidential	21	Oct-17
D3.4	200-W, 500-fs>1-MHz laser (2)	AMP	Public	21	Oct-17
D5.2	Thin-disk multi-pass amplifier with 500W, 1MHz, sub-500fs (1)	USTUTT	Confidential	22	Nov-17
D5.3	Thin-disk multi-pass amplifier with 500W, 1MHz, sub-500fs (2)	USTUTT	Public	22	Nov-17

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

Milestones overview

MS#	Title	WP#	Lead	M#	Status
MS1	Press release	WP8	KITE	1	Achieved
MS2	Kick off meeting and election of members of consortium bodies	WP9	KITE	2	Achieved
MS3	First design, high efficient grating mirrors	WP4	USTUTT	3	Achieved
MS4	PMC module for fibre beam delivery prototype #1	WP4	GLO	6	Achieved
MS5	Specification for laser parameters established	WP1	BOSCH	8	
MS6	1st generation grating mirror on large area, rectangular substrates fabricated	WP4	AMO	8	
MS7	Interface definition fixed	WP1, WP3, WP6	LASEA	8	
MS8	A 50W, 300fs at >1 MHz seed laser	WP3	AMP	9	
MS9	Completion of reporting 'dry run' with all partners	WP9	KITE	9	
MS10	Key performance indicators for productivity progress specified	WP1	BOSCH	10	
MS11	Key performance indicators for quality standards specified	WP1	BOSCH	12	
MS12	Specification system technology established	WP1	BOSCH	12	
MS13	Fully optical characterisation of grating mirror regarding diffraction efficiency and LIDT	WP4	AMO	12	
MS14	PMC module for fibre beam delivery prototype #2	WP4	GLO	12	
MS15	Design of HC-PCF with improved PER at $1\mu m$ (>20 dB)	WP4	XLIM	12	
MS16	System layout fixed	WP3, WP4, WP5, WP6	C4L	12	
MS17	Agreement on draft exploitation and use plan	WP8	KITE	14	
MS18	End-capping definition and process design	WP4	GLO	15	
MS19	PMC module for fibre beam delivery prototype #3	WP4	GLO	18	
MS20	Demonstration of optimized grating mirrors, 99% diffraction efficiency	WP4	AMO	18	
MS21	End-capped output PMC module for beam delivery	WP4	GLO	18	
MS22	First project workshop held	WP8	KITE	18	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

WP9 – Task 9.2: Financial management including auditing

• All financial information to be included in P1 report

WP9 – Task 9.3: Management of ethical and gender related issues

- Partners need to keep accurate personnel records
- Required aspect of reporting
 - Included in periodic and final reporting

WP9 – Task 9.4: Establishment of consortium bodies, planning, organisation and administration of consortium meetings

- Consortium Meetings:
 - Bordeaux February 2016
 - Stuttgart September 2016
 - Aachen March 2017
 - Next meeting is the review meeting
 - Next consortium meeting date and location?
- Consortium bodies
 - MB, TTP & STB to meet tomorrow
 - External Advisory Board needed
 - Any suggestions? Interested organisations?

WP9 – Task 9.5: Management of the consolidation of technical and financial reports and communications with the Commission

- 1st Periodic Report is under way
 - All partners should have completed financial reporting
 - Final information being collated
 - Report to be submitted before end of March
- GA Amendment under way to add CNRS as a linked third party for XLIM
 - Currently with the Commission for approval
 - Should be approved in time for XLIM / CNRS to submit personnel claim this period
 - No action required from other partners

WP9 – The next six months...

- Review meeting (Brussels)
 - Rehearsal 6th June
 - 7th June 2017
- Internal reporting schedule
 - Technical quarterly
 - Financial suggest half way through RP2 M21
- Continue monthly TCs recurring appointment in calendar

WP9 - Deliverables

Deliverable title	Due date	Status
D9.1 Project management handbook	M01 – February 2016	Submitted
D9.2 1 st periodic report	M14 – March 2017	In progress!

WP9 - Milestones

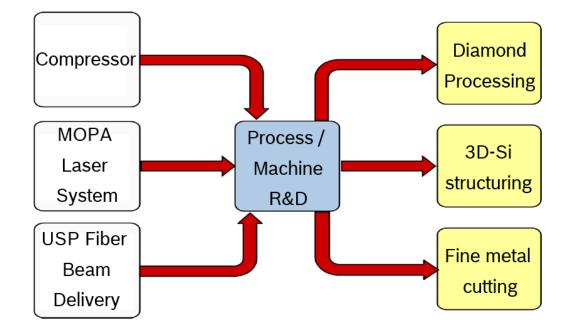
Milestone title	Due date	Status
MS1 Press release	M01 – February 2016	Achieved
MS17 – Agreement on draft exploitation and use plan	M14 – March 2017	Plan to be distributed and agreement sought from partners
MS22 First project workshop held	M18 – July 2017	

Consortium Meeting | Aachen | 27 & 28 March 2017

WP1 Definition of User Requirements

Martin Lustfeld

BOSCH

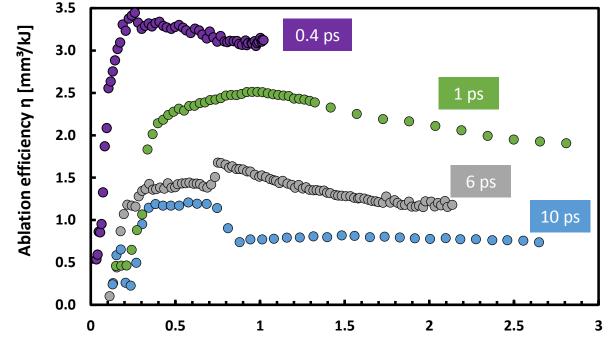

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

Work Package 1

- 3 applications w/ individual requirements:
 - Quality
 - Cost/Productivity
 - Compatibility to manufacturing environment
- HIPERDIAS objectives/benefits:
 - Product enabling (Si structuring)
 - Product enhancement and cost reduction (diamond processing, fine metal cutting
- WP1 objectives:
 - Align product/process requirements w/ system developers' approach
 - Create basis to track progress throughout project

- Partners involved
 - End-users: Bosch, C4L, E6
 - System Development: USTUTT, AMP, AMO, XLIM, LASEA, GLO

WP1 – Task 1.2: Process and System Specifications (BOSCH, E6, C4L, AMP, AMO, LASEA, USTUTT)


- Scope, objective:
 - Translate end-user requirements into system specifications
 - Expert interviews + scientific literature study at end-users
 - Trial experiments to identify initial parameter set
- Aspects considered:
 - Laser source: power, wavelength, pulse duration
 - Optics: focal length, focal spot size, scanning speed, maximum allowable fluence
 - System design: safety, reliability, compatibility w/ manufacturing environment
 - Process control: beam stabilization, synchronization of scanner / laser
- Achievements
 - Identification of suitable parameter ranges
 - Agreement on design specifications for all HIPERDIAS processes

WP1 – Task 1.2: Bosch (3D silicon processing)

- Laser source:
 - P = 1000 W
 - f ≤ 2000 MHz
 - E ≥ 0.5 mJ
 - $\tau = 0.4 \dots 10$ ps (trade off quality \Leftrightarrow efficiency, tbc.)
 - Burst capability (≥ 2)
- Beam delivery:
 - Optics w/ high-quality coatings (suitable for E, τ)
 - Large primary beam diameter (≥ 10 mm)
 - Focal spot diameter < 200 μ m
 - High scanning dynamics incl. synchronization
- Laser machining system:
 - Safety: Exhaust system, x-ray shielding
 - Handling: State-of-the-art NC system for 200 mm wafers
 - HMI: Easy-to-use hand-wheel operation + batch programming

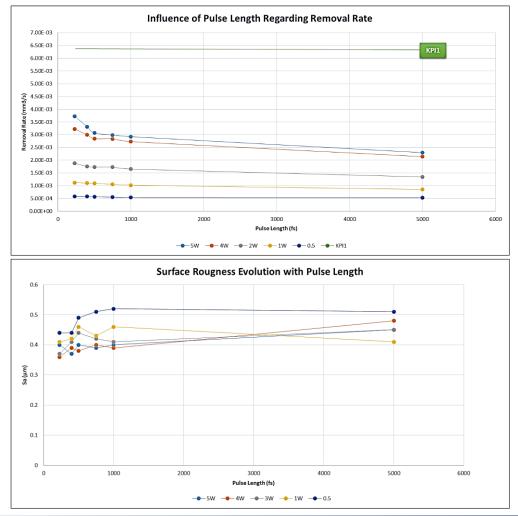
Avg. laser fluence F [J/cm²]

WP1 – Task 1.2: C4L (fine cutting of metals)

Laser specification	Symbol	Unit	Value	
Wavelength	λ	nm	1030	
Pulse duration	τρ	fs	290- 500	
Repetition rate MAX	frep	kHz	1000	
Average power MAX	Pmax	W	5	
Pulse energy MAX	Emax	μJ	85	
Beam quality factor	M²	-	1.1	
Focus radius (x)	dfx	μm	15-30	
Focus radius (y)	dfy	μm	15-30	
Focal length	F	μm	80-160	

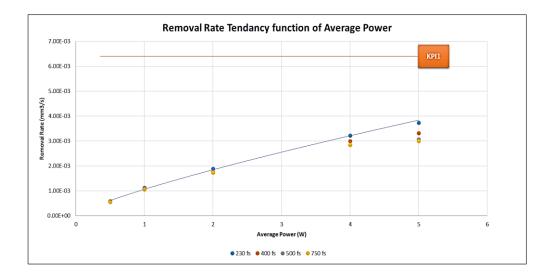
КРІ	Benchmark Laser Performances	C4L Specifications for the HIPERDIAS Laser
Average power	5W	200W
Pulse duration	230-20'000 fs	Tuneable around 500 fs (range to be discussed)
Repetition rate	60KHz-1MHz	100KHz-2MHz
Pulse energy	Max 85µJ	200µJ – higher to be disccussed
Wavelength	1030 nm	1030 nm
Beam quality factor	TEM 00 – 1.1	TEM 00 – 1.1
Output Beam diameter (before BE)	5mm	Approx. 5mm

WP1 – Task 1.2: C4L (fine cutting of metals)


- Laser machining system and beam delivery:
 - Safety: Exhaust system, possibly x-ray shielding
 - Handling: State-of-the-art NC system, flexible system to shift from optic to optic
 - Scanning system
 - Trepaning optic
 - Vision system for identification of parts

WP1 – Task 1.2: E6 (diamond polishing)

- Pulse Duration
 - <u>Removal Rate</u>
 - Increase of removal rate when pulse duration is reduced
 - Phenomenon with higher importance when average power is increased
 - Surface Roughness
 - Drop when pulse duration below 1 ps
 - Not high variation for femtosecond pulses
 - <u>Conclusion</u>
 - Lowest pulse duration requested (< 500 fs)


WP1 – Task 1.2: E6 (diamond polishing)

• Average Power

- Increase of removal rate with average power
- Higher influence at low pulse duration
- Best fit (considering same ablation regime)

 \rightarrow 10 times higher removal rate than current mechanical polishing at 200 W

- Other ablation regime occurring at high average power and not forecast?
- Use of pulse burst mode to achieve higher removal rate (WP2)

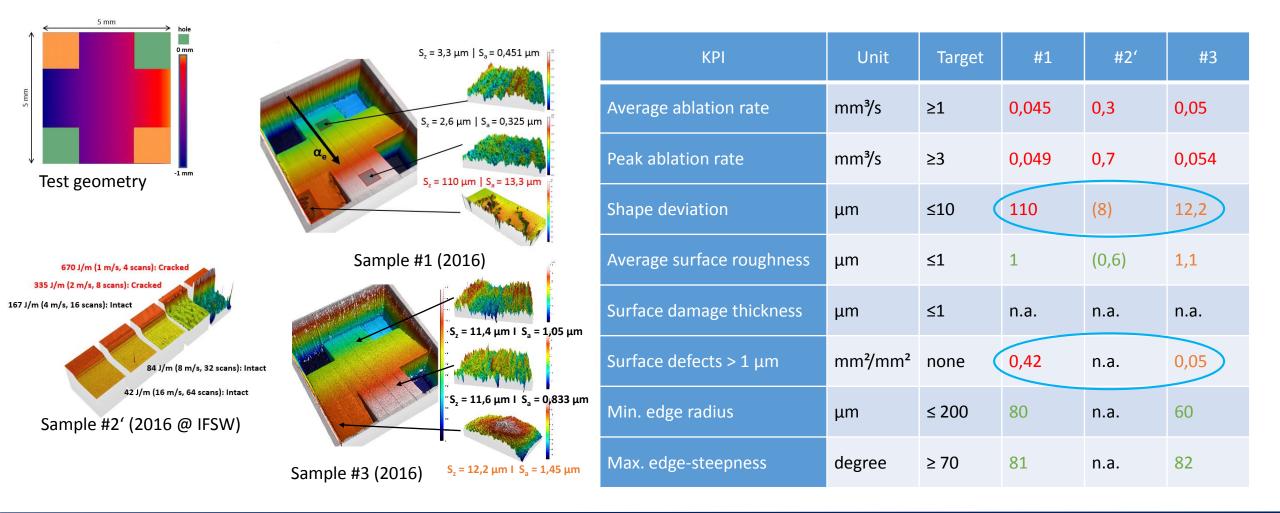
PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP1 – Task 1.2: E6 (diamond polishing)

• Summary

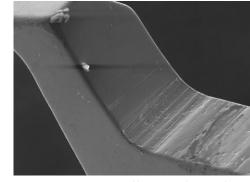
KPI	Current Laser Performances	Current Validation Status
Material removal rate	0.0035 mm3/s	•
Surface Roughness	0.36 μm	

КРІ	Current Laser Performances	E6 Specifications for HIPERDIAS Laser
Power	5W	> 200W 500/1000 W
Pulse Length	230 fs	400 fs
Frequency	60KHz-1MHz	< 2MHz Pulse burst (multi pulses mode)
Wavelength	1030 nm	1030 nm



WP1 – Task 1.3: Assessment and validation of technical progress (Bosch, E6, C4L)

- Scope, objective:
 - Identify most important key performance indicators (KPIs) to track project progress and to compare w/ alternative processes (e.g. mechanical cutting, polishing)
 - Define KPI targets to be achieved within HIPERDIAS
 - Identify suitable analysis methods to evaluate KPIs
- Aspects considered:
 - Quality KPIs
 - Cost, productivity KPIs
 - General KPIs suitable for all applications and application-specific KPIs
- Achievements
 - Comprehensive set of KPIs defined (10 KPIs per application)
 - Suitable measurement systems identified, initial KPI values evaluated, KPI targets specified


WP1 – Task 1.3: C4L (fine cutting of metals)

Product geometry features

Laser-machined part

Conventionally machined part w/ post-processing

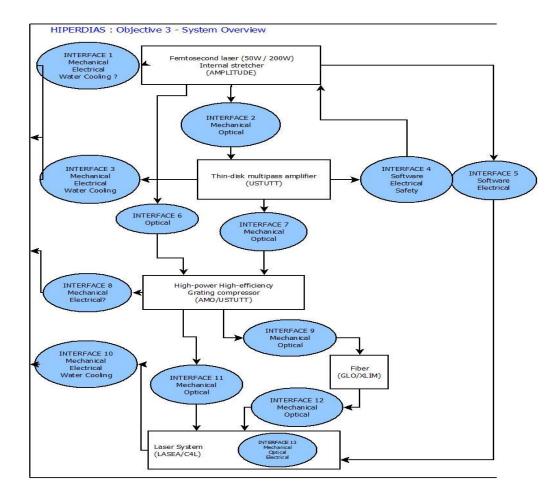
КРІ	Unit	current process value
Part thickness	mm	0.1 – 0.3
Part dimensions	mm	Gear diameter: 5-10 Watch arm length: ca. 20
Material covered		<u>Metal</u> , ceramic, sapphire, carbon
General dimensions tolerances	mm	From ± 5 to ± 20
Specific dimensions tolerances	mm	+- 5
Smallest holes	mm	From 50 to 100
Maximal side steepness (taper)		0 to 10°
Average cutting speed (relative to shape and thickness)	mm/min	USP laser: ≤50 Fiber laser: 300
Shape deviation	μm	+- 5
Surface roughness (non-functional)	μm	0.4 (N5)
Surface roughness (functional)	μm	0.1 (N3)

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP1 – Task 1.3: E6 (diamond polishing)

Conventional polishing machine

A—Polishing Wheel B—Pneumatic Head		КРІ	Target
	C—Cooling Pipes D—Copper Head	Material Removal Rate	> 0.150 mm ³ /s per disc
0.0	Total Handling Time	< 10 min per disc	
1 AN		Post Processing/Cleaning Time	no post processing
hing hing $f(x) = \int_{-\infty}^{0} \int$		Production Running Cost	< 5\$ per disc
	-15 25	Surface Roughness	Sa < 0.010 μm, Sz < 0.12 μm
	ъ. С	Shape Deviation	< +/- 2 μm
	()	Visual Defects	pass rate 100%
	Cobalt Depletion	0 %	
	Graphitization	No micro-structure modification	
Flatnes	ss measurement of domed surface	Colour	L* < 15



Consortium Meeting | Aachen | 27 & 28 March 2017

WP1 – Task 1.4: Interface requirements (LASEA, 4CL)

- Scope, objective:
 - Specify interfaces between different system units (laser, scanner, axes, opto-mechanical elements)
- Aspects considered:
 - Electrical, mechanical, optical and software interfaces
 - Interface: limit layer between 2 components
- Achievements
 - Identified all different system interfaces relevant for each partner
 - Specification of interface requirements both from end-user and system side

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP1 - Deliverables

Deliverable title	Due date	Status
D1.1 End-user application specifications	M04 – May 2016	\checkmark
D1.2 Process and system specifications	M12 – January 2017	\checkmark
D1.3 Prototypes and progress validation	M12 – January 2017	\checkmark
D1.4 Definition of software-technical interface	M12 – January 2017	\checkmark

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP1 - Milestones

Milestone title	Due date	Status
MS5 Specification for laser parameters established	M08 – September 2016	✓
MS10 Key performance indicators for productivity progress specified	M10 – November 2017	\checkmark
MS11 Key performance indicators for quality standards specified	M12 – January 2017	✓
MS12 Specification for system technology established	M12 – January 2017	\checkmark

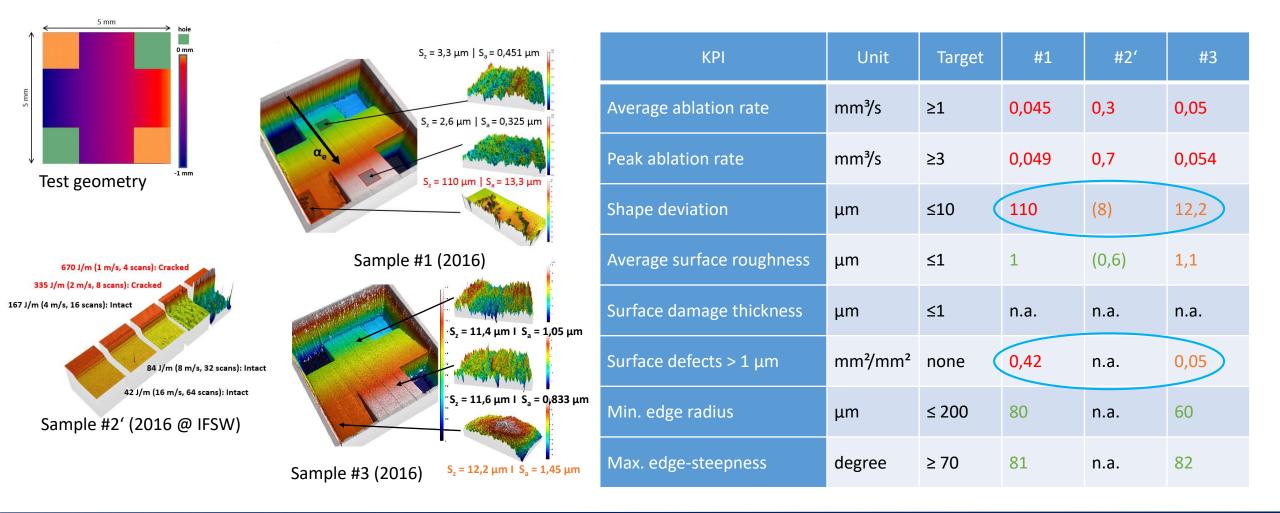
Consortium Meeting | Aachen | 27 & 28 March 2017

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP2 Process Development

Status Update

Consortium Meeting | Aachen | 27 & 28 March 2017



PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Task 2.1

	Used Laser Sources		KPI	Unit	Target	#1	#2'	#3	
Sample	#1	#2'	#3	Average ablation rate	mm³∕s	∖ 1	0.045	0.2	0.05
Laser	Trumpf	Experimental	Lumentum	Average ablation rate	mm75	≥1	0,045	0,3	0,05
	TruMicro	@ USTUTT	PicoBlade	Peak ablation rate	mm³∕s	≥3	0,049	0,7	0,054
λ	1030 nm	1030 nm	1064 nm						
τ _p	6 ps	6 ps	10 ps	Shape deviation	μm	≤10 (110	(8)	12,2
f _{rep}	400 kHz	300 kHz	400 kHz	Average surface roughness	μm	≤1	1	(0,6)	1,1
P _{max}	50 W	670 W	40 W		b		_	(0)0)	_/_
M ²	1,1	3	1,1	Surface damage thickness	μm	≤1	n.a.	n.a.	n.a.
burst	no	no	yes	Conference de la constance de constance			0.42		0.05
F	255 mm	340 mm	255 mm	Surface defects > 1 μm	mm²/mm²	none 🤇	0,42	n.a.	0,05
d ₀	80 µm	140x420 μm²	55 μm	Min. edge radius	μm	≤ 200	80	n.a.	60

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

Max. edge-steepness

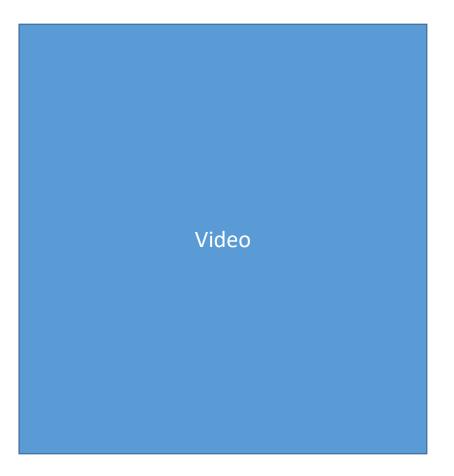
degree

≥ 70

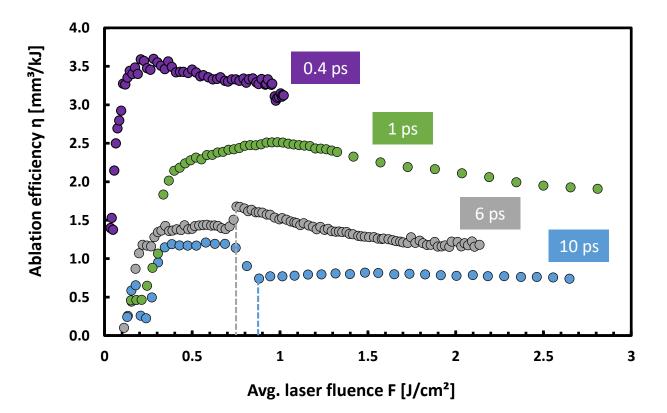
81

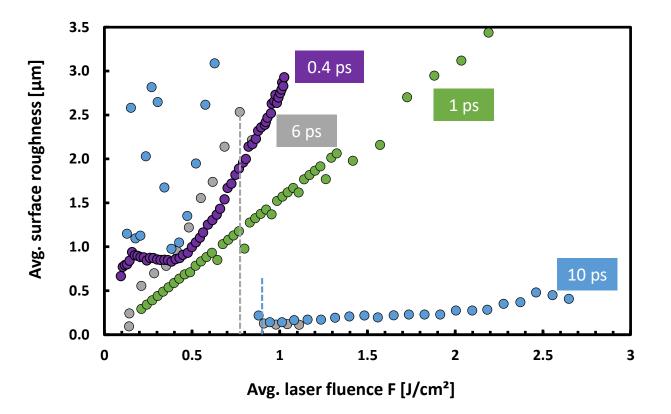
82

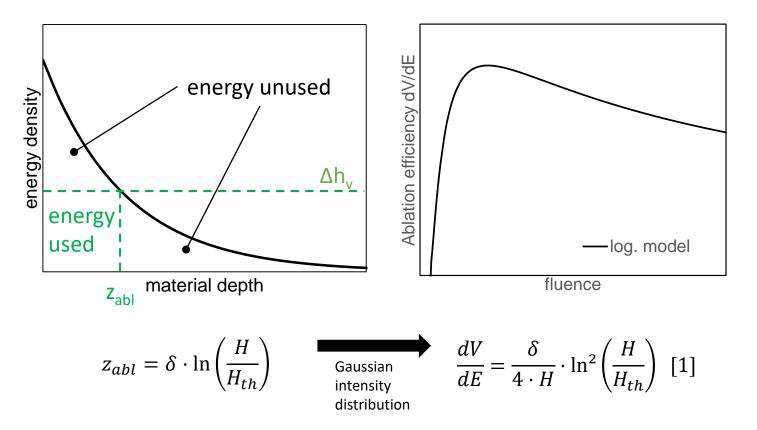
n.a.


- Insights from samples
 - High average power (Approx. 1000 W) required to reach ablation rate goals
 - High thermal load require fast scan systems
 - Vectorial scanning → high jump time losses
 - Good Quality at high average power achievable
 - Burst modus: Shape deviation and surface defects can be significantly reduced
 - Edge radius ≈ spot diameter

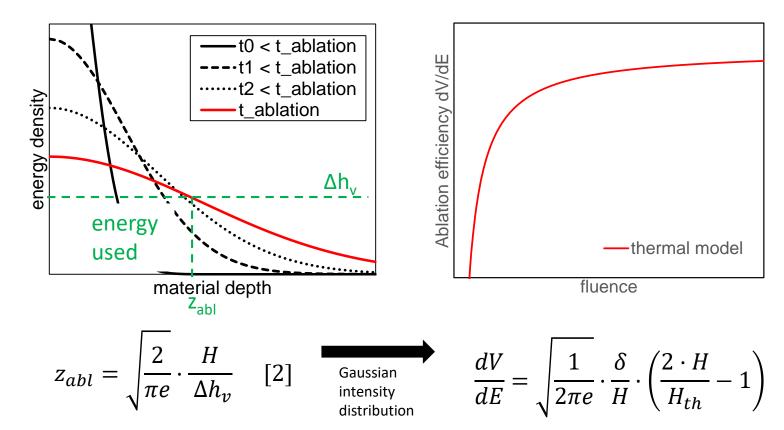
KPI	Unit	Target	#1	#2'	#3
Average ablation rate	mm³∕s	≥1	0,045	0,3	0,05
Peak ablation rate	mm³∕s	≥3	0,049	0,7	0,054
Shape deviation	μm	≤10 (110	(8)	12,2
Average surface roughness	μm	≤1	1	(0,6)	1,1
Surface damage thickness	μm	≤1	n.a.	n.a.	n.a.
Surface defects > 1 μm	mm²/mm²	none 🤇	0,42	n.a.	0,05
Min. edge radius	μm	≤ 200	80	n.a.	60
Max. edge-steepness	degree	≥ 70	81	n.a.	82


- Influence of high thermal load
 - Stable process for first number of passes
 - Process gets instable as heat accumulation gets thermal effects to significant level
 - → Cracks, Holes, Permanent Change of Reflectivity
- Laser parameters
 - P_{av} = 32 W
 - f_{rep} = 200 kHz
 - $d_{Spot} = 56 \ \mu m$
 - $v_{scan} = 1 \text{ m/s}$


- Decisive characteristic for Si ablation processes: Ablation efficiency
 - Primarily affected by laser fluence
 - *Strong increase* of efficiency slightly above ablation threshold
 - Maximum efficiency at moderate fluences
 - *Decreasing* efficiency at high fluences
 - Trends with shorter pulse durations
 - Maximum efficiency increases
 - Form of efficiency-function changes
 - Predictions? Applicable models?

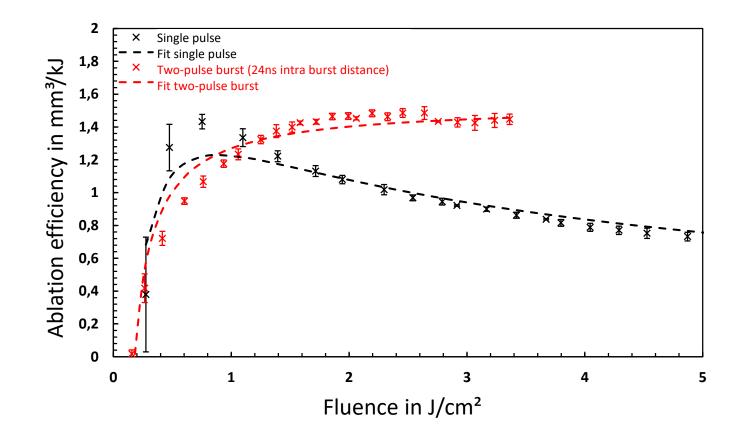

- Decisive characteristic for Si ablation processes: Surface roughness
 - Primarily affected by laser fluence
 - *Strong increase* of roughness slightly above ablation threshold
 - Maximum roughness
 - around efficiency maximum (τ_p = 6, 10 ps)
 - Monotonous increase ($\tau_p = \le 1 \text{ ps}$)
 - Strong reduction of roughness
 - F larger than \approx 1 J/cm² (τ_p = 6, 10 ps)
 - $F > 3 \text{ J/cm}^2$ ($\tau_p = \le 1 \text{ ps, not shown}$)
 - Trends with shorter pulse durations
 - Threshold for good surface quality at higher fluence
 - Impact for process development?

- Frequently used model in scientific community
 - Based on logarithmic ablation law
 - Energy absorption according to lambert-beers' law
 - No thermal diffusion of energy during ablation process
 - Constant ablation threshold ${\rm H}_{\rm th},$ energy penetration depth δ



[1] B. Neuenschwander et al.: Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs. In: SPIE LASE, International Society for Optics and Photonics, 2012. S. 824307-824307-13.

- Thermal ablation model
 - Analytic approximation of numerical solution for *two temperature model*
 - Thermal diffusion of energy during ablation process takes place
 - Temperature dependent material properties are taken into account



[2] B.H. Christensen, K. Vestentoft, P. Balling: Short-pulse ablation rates and the two-temperature model, Applied Surface Science 253 (2007) 6347–6352

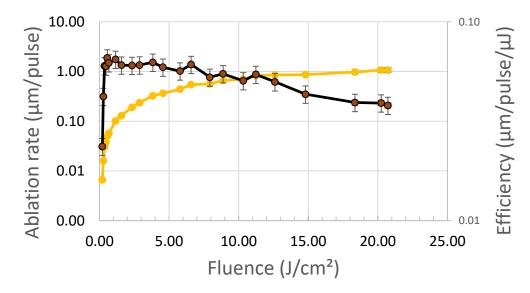
- Comparison of ablation models with experimental data
 - Logarithmic model → Best fit for single pulse ablation
 - Thermal Model → Best fit for burst-ablation
- Chance for Si-Ablation
 - Efficiency increases with laser fluence

- Conclusions / Consequences for Laser and Machine
 - High average power (Approx. 1000 W) required to reach ablation rate goals
 - High thermal load require fast scan systems
 - Vectorial scanning \rightarrow high jump time losses
 - Good Quality at high average power achievable
 - Burst modus
 - Shape deviation and surface defects can be significantly reduced
 - Energy efficiency can be increased
 - Edge radius ≈ spot diameter
- Next steps
 - Continue studies on process fundamentals, processing with burst mode in particular
 - Design of experimental Strategy for up-scaling of the laser process
 - Identification of phenomena occurring specifically at very high laser power
 - Optimization of overall process

Consortium Meeting | Aachen | 27 & 28 March 2017

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

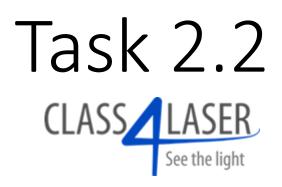
LASER ENGINEERING APPLICATIONS



- Achievements :
 - Low power (20W) laser preliminary trials at LASEA to study the ablation of Si
 - Define preliminary best process conditions
 - Influence of the process on the system design
 - Critical energy density : ~0.7 J/cm²
 - Ablation rate : 60 nm/pulse
 - Efficiency : 62nm/pulse/µJ
 - \rightarrow big spot size of ~50 μ m

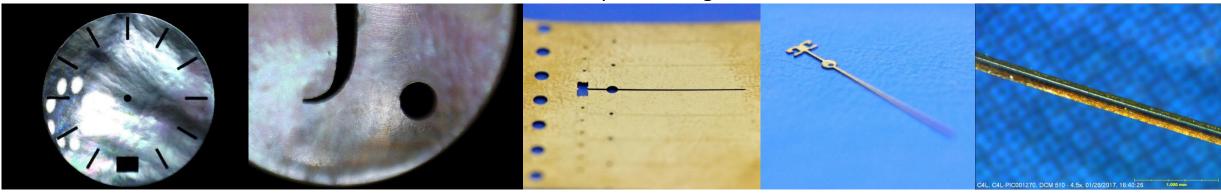
Power (W)	Pulse energy (mJ)	Pulse energy -20% losses (mJ)	Max. Energy density (J/cm²)	Optical Spot Diameter (μm)
500	0,5	0,4	21	50
1000	1	0,8	42	50

Ablation and efficiency - 1D



Consortium Meeting | Aachen | 27 & 28 March 2017

PHOTONICS PUBLIC PRIVATE PARTNERSHIP



WP2 – Task 2.2: Fundamental process development fine cutting of metals

- Partner involved: C4L
- Until now trials have been done thanks to the carbide laser (85µJ, 5W, 1MHz) available at C4L using scanner optics on metals and organic materials: Brass, Glass, mother of pearl. Main goal has been to define a rough parameters window in order to give required specifications feedback to the laser manufacturer.
- Deviations : No deviation

Example: Cutting of 0.15mm brass with 5W femto second laser: 9s

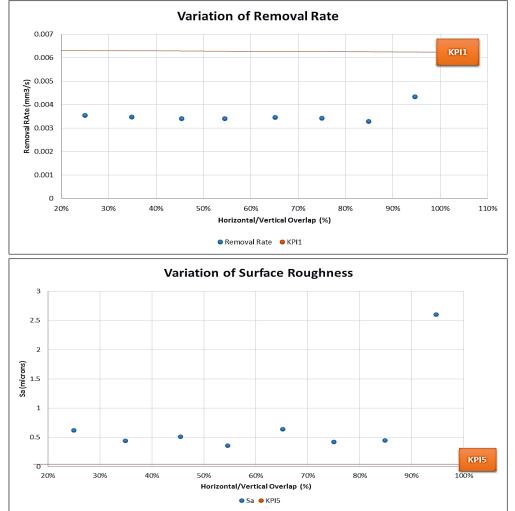
PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP2.2 – The next six months...

- Fine cutting of metals:
 - Systematic process development
 - Cutting with trepanning optic
 - Exploring the maximal speed and thickness

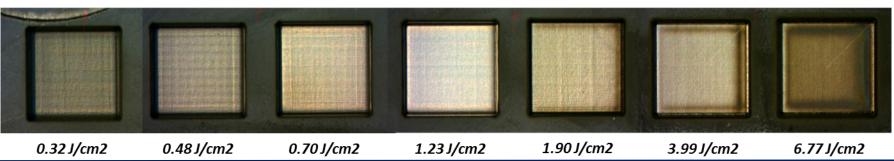
Consortium Meeting | Aachen | 27 & 28 March 2017

PHOTONICS PUBLIC PRIVATE PARTNERSHIP


Task 2.3 elementsix a De Beers Group Company

WP2 – Task 2.3: Fundamental process development diamond ablation

- Overlap testing
 - No variation of removal rate/surface roughness with overlap between 25% - 85%
 - Variation at extremely high overlap only
 - \rightarrow Thermal effects..?
 - \rightarrow Possible thermal effects at 200 W ?
 - Possible to work on a large window of overlap without influence on removal rate



WP2 – Task 2.3: Fundamental process development diamond ablation

- Fluence analyses
 - Previous pre-analyses in WP1 showed fluence threshold around: Φth <u>~</u> 0.1 J/cm2
 - Optimal fluence at 5 W average power : Φ ~ 0.48 J/cm2
 - PCD similar behavior as metal regarding ultra-short pulses?

WP2 – The next six months...

<u>Element Six</u>

- Work at low fluence: $\Phi < 1 \text{ J/cm2}$
- Reproduce optimal fluence search for different average power to generate best fit and forecast at 200 W
- Test pulse burst mode to achieve higher removal rate (KPI1)
- Carry out material surface analyses
 - Composition: Cobalt depletion (KPI8)
 - Microstructure: Graphitization (KPI9)
- Installation and set up of the 200 W Laser system

Consortium Meeting | Aachen | 27 & 28 March 2017

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Task 2.4

Not yet started.

WP3 Ultrafast laser front-end development

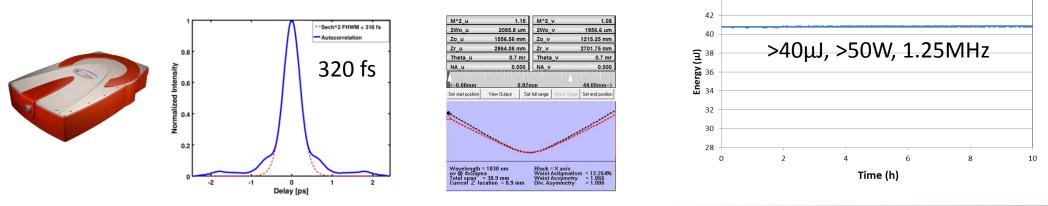
Clemens Hönninger

AMP

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

Work Package 3 Overview

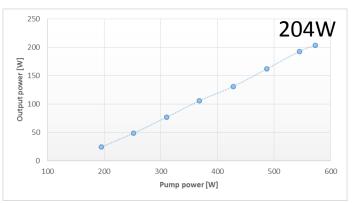
- Objective: Develop ultrafast laser frontend for further amplification to a 500-W and 1-kW average power femtosecond laser
- Achievements in period:
 - Ultrafast laser frontend development is on track
 - First 50-W fs laser was realized and delivered to partner USTUTT
 - "gain limiting" option was delivered in addition to facilitate the multipass thin disk amplifier architecture
 - Work on 200-W laser development was started, parts ordered, experiments started, first results obtained
 - Fast modulation concepts have been developped and must now be consolidated.
 - Discussions with end users started and requirements taken into account for modulator concept and user interface.
- Involved partners: AMP, USTUTT so far, AMO to come (test of high efficiency gratings)

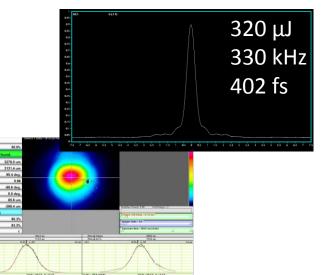


Confidential

WP3 – Task 3.1: 50-W, 300-fs laser >1MHz at 1030nm

- partners involved: AMP, USTUTT
- Achievements:
 - 50-W laser optimized for spectrum @ 1030nm
 - 50-W laser output with modulator option: primary and secondary signal, primary signal is used signal, secondary signal can be used to limit stored energy in the thin disk amplifier for simpler system architecture
 - 50-W laser delivered to USTUTT (D3.1)




WP3 – Task 3.2: 200-W, ~500-fs laser >1MHz at 1030nm

- partners involved: AMP, USTUTT, AMO
- Achievements:
 - Hybrid fiber-seeded/crystal-amplifier architecture, Tangor platform
 - Short pulse duration ~400fs demonstrated
 - >200W output power achieved with good beam quality
 - Still before compression!

Confidential

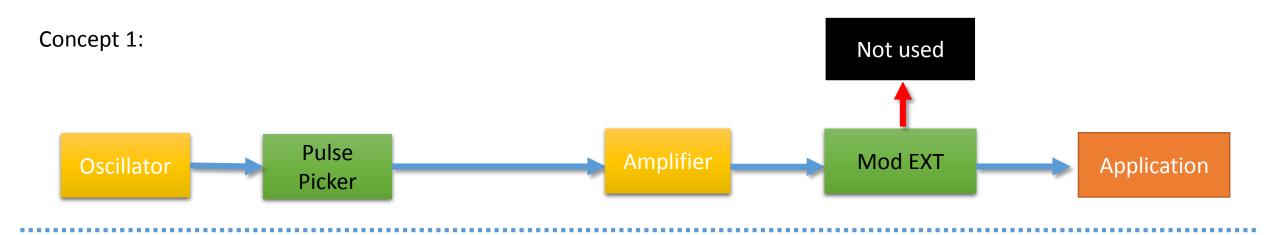
• Task on track so far. Worst case scenario: slightly <200W after compression

Confidential

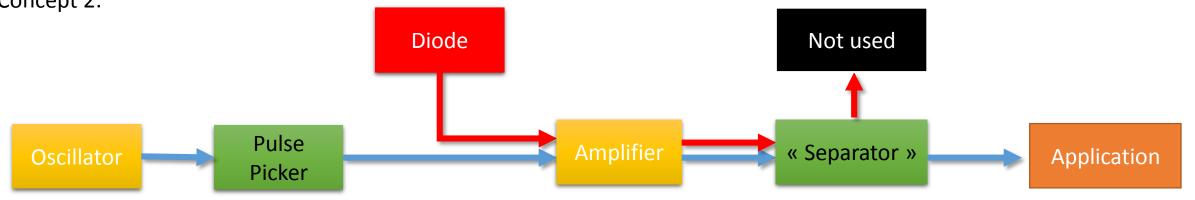
WP3 – Task 3.3: Flexible user interface including high speed modulation a high power pulse train

- Overview:
 - The objective of the task is nicely summarized in its title
 - User requirements out of the consortium are taken into account in order to develop the most appropriate user interface
 - Synchronisation with a scanner or axes is taken into account as far as possible with a "master oscillator"-based laser
 - The aspects of modulating high average power and high pulse energies are taken into account

Confidential

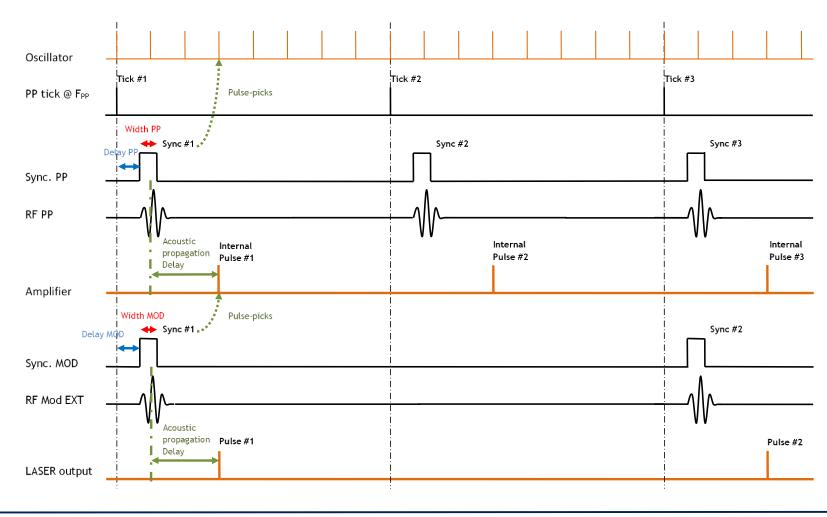

WP3 – Task 3.3: Flexible user interface including high speed modulation a high power pulse train

- partners involved: AMP
- Achievements:
 - Different concepts worked on
 - 1: based on existing user interface, but introduced new options for externally triggering the pulse picker (and not only the GATE) to allow synchronisation with the scanner. This concept works up to 2MHz with the GATE and up to 20MHz with only the pulse picker.
 - 2: proof of principle of new modulator/gain limiter concept to gain higher flexibility than option1 for certain cases. Advantages:
 - Higher speed possible (but only relevant for higher repetition rate oscillators, not the case in Hiperdias)
 - Easily extensible to higher average powers (multi-100-W concepts)
 - Both concepts are compatible with burst mode operation
- Most likely, concept 1 will be integrated to the 200-W laser, because very high pulse repetition rates seem not necessary.



Schematics of the modulation concepts:

Concept 2:


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

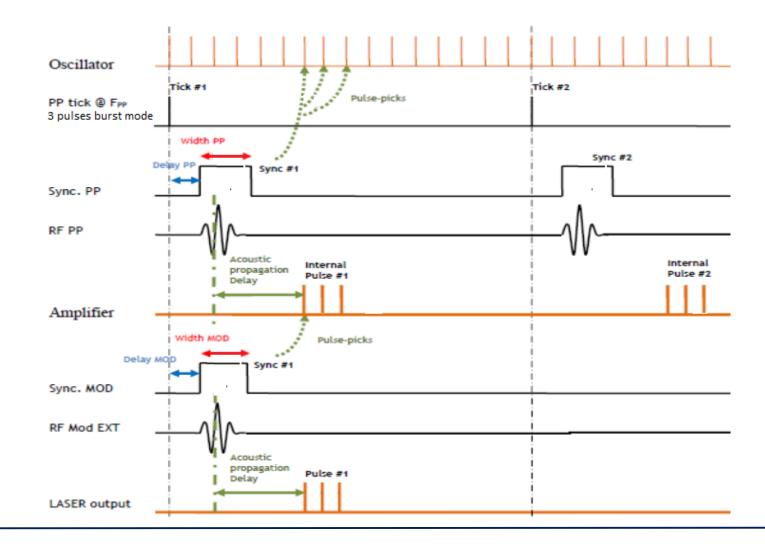
Confidential

Synchronisation scheme with pulse picker and external modulator:

Oscillator: 40MHz PP: up to 20MHz

 PP signal can be generated internally or externally (by user: « pulse on demand »)

Attention:


- Latency of AOMs to be taken into account! (acoustic propagation)
- AOM2 (Mod EXT) is limited to 2MHz (by rise time)
- If PP and ModEXT are used in external mode, then the user has to provide ALL TRIGGER signals!
- Let's discuss the different user profiles together!

Confidential

Synchronisation scheme with burst mode:

Confidential

WP3 – The next six months...

- Task 3.2: 200-W, ~500fs laser, >1MHz @ 1030nm
 - Consolidate laboratory demonstration and final architecture
 - Implement tuning of pulse duration
 - Test high reflectivity AMO gratings and evaluate possible integration in demonstrator
 - Exchange interface information with partners/endusers
 - Start realizing the demonstrator in its final package
- Task 3.3: Flexible user interface including high speed modulation
 - Consolidate proof of concept of high speed modulation at high average power
 - Decide for the concept to best match partner/user requirements
 - Implement this concept to the 200W demonstrator

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

WP3 - Deliverables

Deliverable title	Due date	Status
D3.1 50-W, 300-fs, >1-MHz laser for seeding an Yb:YAG amplifier (1)	M09 – October 2016	\checkmark
D3.2 50-W, 300-fs, >1-MHz laser for seeding an Yb:YAG amplifier (2)	M09 – October 2016	\checkmark

WP3 - Milestones

Milestone title	Due date	Status
MS8 A 50W, 300fs at >1 MHz seed laser	M09 – October 2016	\checkmark