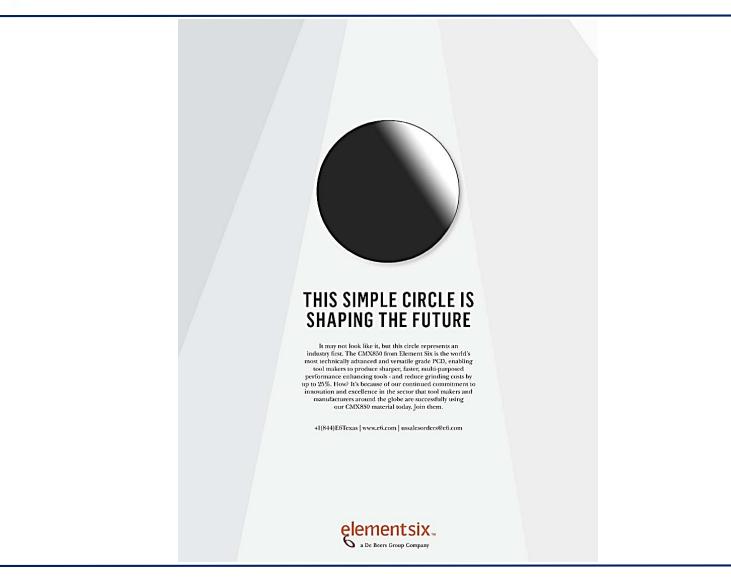
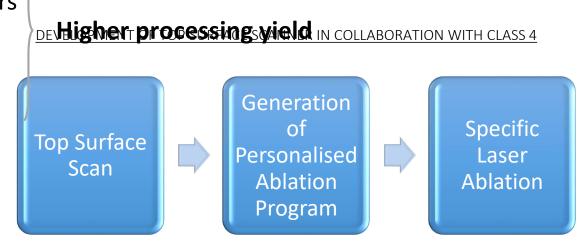


William Scalbert



INTRODUCTION


SCOPE of HIPERDIAS PROJECT for Element Six

Main scope

HIPERDIA

Replacement of mechanical polishing machines by Laser machines to Laser ablate PCD up to a mirror surface finish:

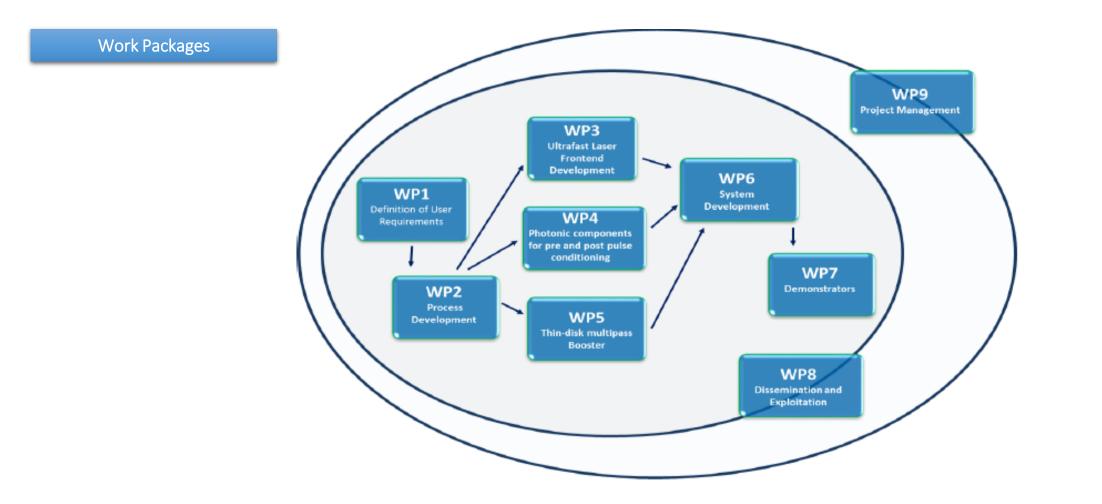
- Low processing cost
- Fast processing
- Cold ablation -> no thermal effect
- Laser spot machining with controlled Laser parameters
- Automatic process
- Deal with various topographies thanks to top surface scanner/personalised program

SCOPE of HIPERDIAS PROJECT for Element Six

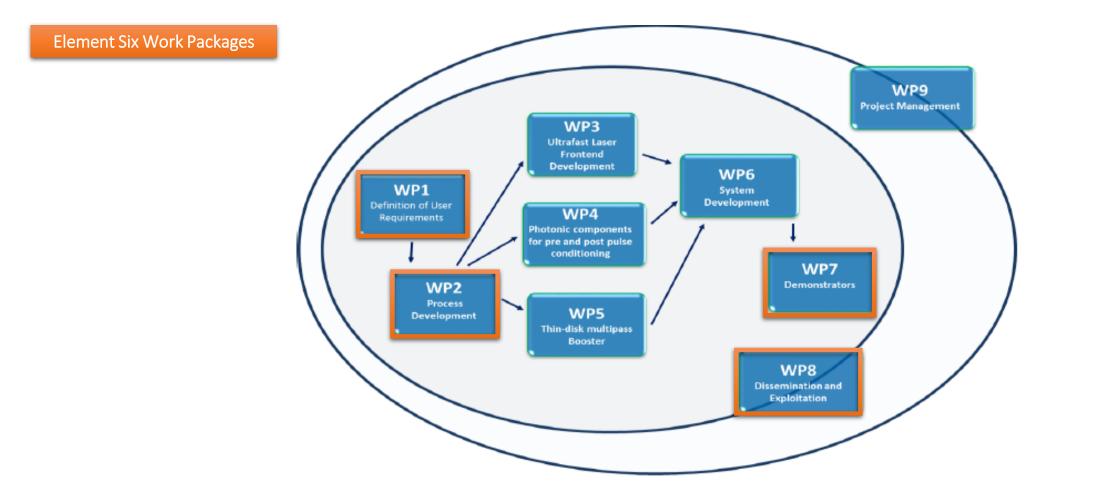
Further scope

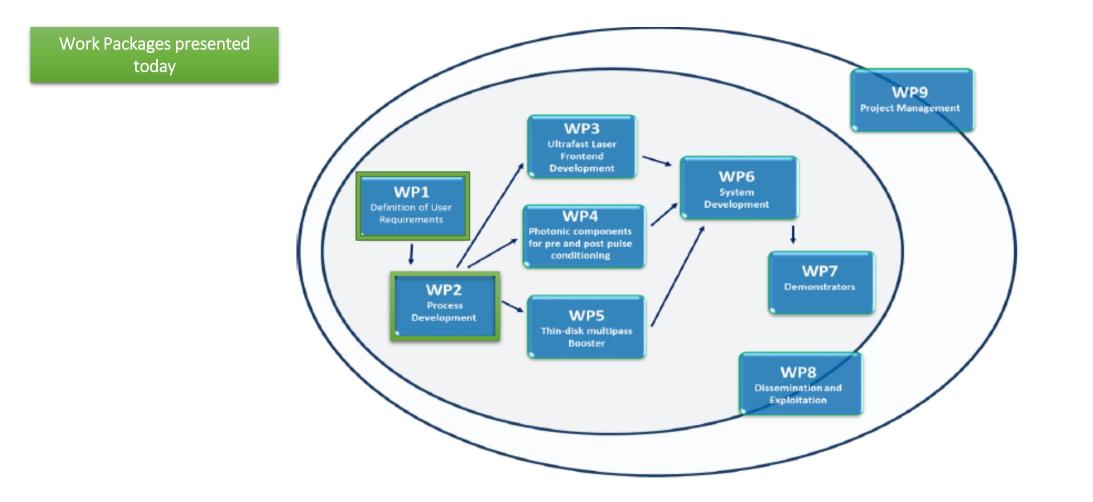
If capable of polishing a 75 mm diameter disc, extremely wide opportunities arise!

- Polishing flat/non flat segments
- Polishing segment edges
- **Polishing Syndrills**
- Polishing 3D forms
- Polish other surfaces than PCD (PcBN)


Oil & Gas Cutters

Advanced Material Cutters





WP1	Defin	nition of user requirements						
Target Applicat	ion	Benchmarking product: • PCD Syndite	Unit	Target Value				
		Surface roughness Average ablation rate	µm mm³/s	≤ 0.01 ≥ 0.15				
		Shape deviation	μm	≤ 2 (waviness)	Edge Chipping			
		Edge Chip		Must not encroach on the usable area (defined per disc). A maximum of three chips allowed as long as they are separated by the length of the chip. No more than 45° of the periphery can be affected by chipping. Chip-out cannot extend the thickness of the disc.				
		Pits	μm	A hole, cavity or small indentation in the PCD polished surface. Pitting is one or more small shallow craters on the surface. It has a definite depth. Typically can be large discrete pits or a scatter of pits smaller than 0.05mm diameter. See table 2 for diameter specifications Pits with a significant* depth are not allowed.				
		Surface Cracks		A crack with a significant depth* is not acceptable. Requires case-by-case review.				
		Black spot (Binder components leakage)		Follow pitting specifications Requires case-by-case review.				

WP1	Defin	ition of user requ	uireme	nts	
Target Applicat	tion	Key Performance Indicator Benchmarking product: • PCD Syndite	Unit	Target Value	Ma dian L k >200 (XL) 200- (XL)
		Surface roughnessμmAverage ablation ratemm³/sShape deviationμmEdge ChipPitsμm		 ≤ 0.01 ≥ 0.15 ≤ 2 (waviness) Must not encroach on the usable area (defined per disc). A maximum of three chips allowed as long as they are separated by the length of the chip. No more than 45° of the periphery can be affected by chipping. Chip-out cannot extend the thickness of the disc. A hole, cavity or small indentation in the PCD polished surface. Pitting is one or more small shallow craters on the surface. It has a definite depth. Typically can be large discrete pits or a scatter of pits smaller than 0.05mm diameter. See table 2 for diameter specifications Pits with a significant* depth are not allowed. 	100-50 (xs;CMX pit > 0.100/#ifn (0.107x0.183mm)) 0.25pits/cm ² 50-2 (xs) <25
		Surface Cracks Black spot (Binder components leakage)		A crack with a significant depth* is not acceptable. Requires case-by-case review. Follow pitting specifications Requires case-by-case review.	CTH pit < 0.050mm (0.040x0.040mm)

WP1	Defin	iition of user requ	tion of user requirements							
Target Applicat	tion	Key Performance Indicator Benchmarking product: • PCD Syndite	Unit	Target Value						
		Surface roughness Average ablation rate Shape deviation Edge Chip	μm mm³/s μm	 ≤ 0.01 ≥ 0.15 ≤ 2 (waviness) Must not encroach on the usable area (defined per disc). A maximum of three chips allowed as long as they are separated by the length of the chip. No more than 45° of the periphery can be affected by chipping. Chip-out cannot extend the thickness of the disc. 	PCD Crack					
		Pits Surface Cracks	μm	A hole, cavity or small indentation in the PCD polished surface. Pitting is one or more small shallow craters on the surface. It has a definite depth. Typically can be large discrete pits or a scatter of pits smaller than 0.05mm diameter. See table 2 for diameter specifications Pits with a significant* depth are not allowed. A crack with a significant depth* is not acceptable. Requires case-by-case review.						
		Black spot (Binder components leakage)		Follow pitting specifications Requires case-by-case review.						

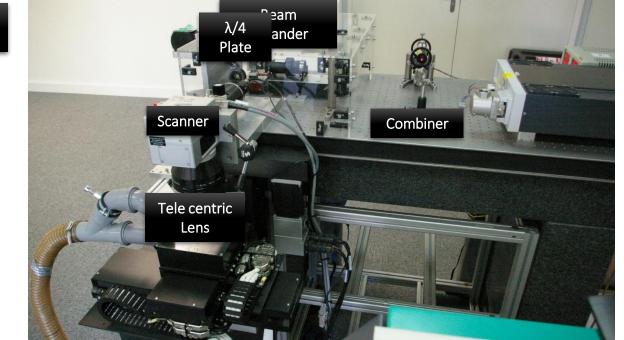
WP1	Defin	ition of user requ	uireme	nts	
Target Applicat	tion	Surface roughness Average ablation rate Shape deviation	Unit μm mm³/s μm	Solution the end of t	
		Edge Chip		Must not encroach on the usable area (defined per disc). A maximum of three chips allowed as long as they are separated by the length of the chip. No more than 45° of the periphery can be affected by chipping. Chip-out cannot extend the thickness of the disc.	PCD Black Dots
		Pits	μm	A hole, cavity or small indentation in the PCD polished surface. Pitting is one or more small shallow craters on the surface. It has a definite depth. Typically can be large discrete pits or a scatter of pits smaller than 0.05mm diameter. See table 2 for diameter specifications Pits with a significant* depth are not allowed.	
		Surface Cracks Black spot (Binder components leakage)		A crack with a significant depth* is not acceptable. Requires case-by-case review. Follow pitting specifications Requires case-by-case review.	

WP1	Defir	nition of us	er requirements	
Target		Key Performance Indicator	Description	Target Value
Target Applicat	cion	Inhomo	Surface inhomogeneous areas appear different in colour to the normal PCD surface. It has a degree of surface roughness with a definite depth and boundary	Refer to Table 4.2. Follow pitting specifcation (015). Fig 4.07
		Outer diameter finish	Outer diameter (OD) quality.	Edge imperfection must not encompass more than 120° of the periphery. Metal swarf must be removed. The metal ring surrounding the PCD shall be continuous and intact and shall not intrude into the PCD surface by more than 1mm.
		Surface Scratches Polish quality	PCD surface scratches. Smaller grain grades tend to be more susceptible to scratching. Quality standard of surface finish. A product maybe be partially polished with metal remain	A scratch with a significant depth is not acceptable. A significant depth is detected by running a sharp edge over the scratch, See Code022. Refer to Table 4.2. Fig 4.15 shows edge polishing fault or not fully polsihed
		Surface staining Metal Spots	The area can be clearly bounded and is easily observed both by the naked eye Judged as a bright metallic area.	Refer to Table 4.2. Follow pitting (015) specification. No contamination is allowed but traces of metal wrap, of negligible depth, are permitted on the periphery.
		Surface shading	PCD shading defines how dark is the colour of the PCD.PCDshading or toning defines how much grey exists in the colour.	Discs are to be judged on the amount of variation of shading and toning across the product by bare eye.
		Black spot Bullet Holes / Grain growth	Typically found on polished PCD. "Swiss cheese" type structure in the PCD layer. Grain Growth is defined as large crystals that appear on the surface of the disc or interface.	Follow Pitting specifications Code 015. Code 015

IPERDIAS Consortium Meeting - Stuttgart - 13/09/2016

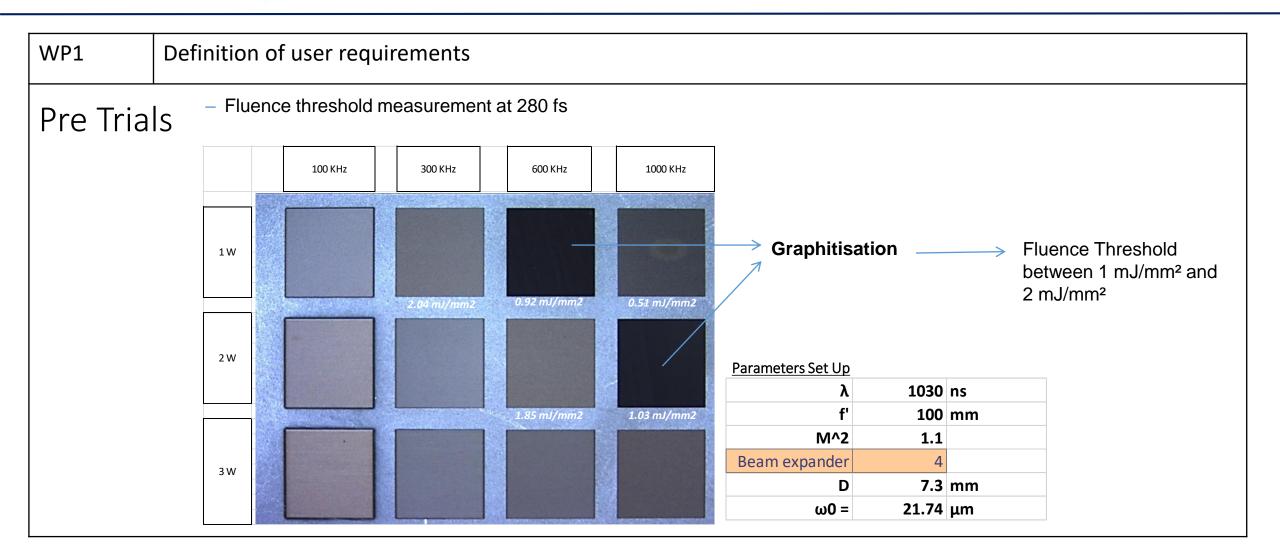
WP1

Set Up


Definition of user requirements

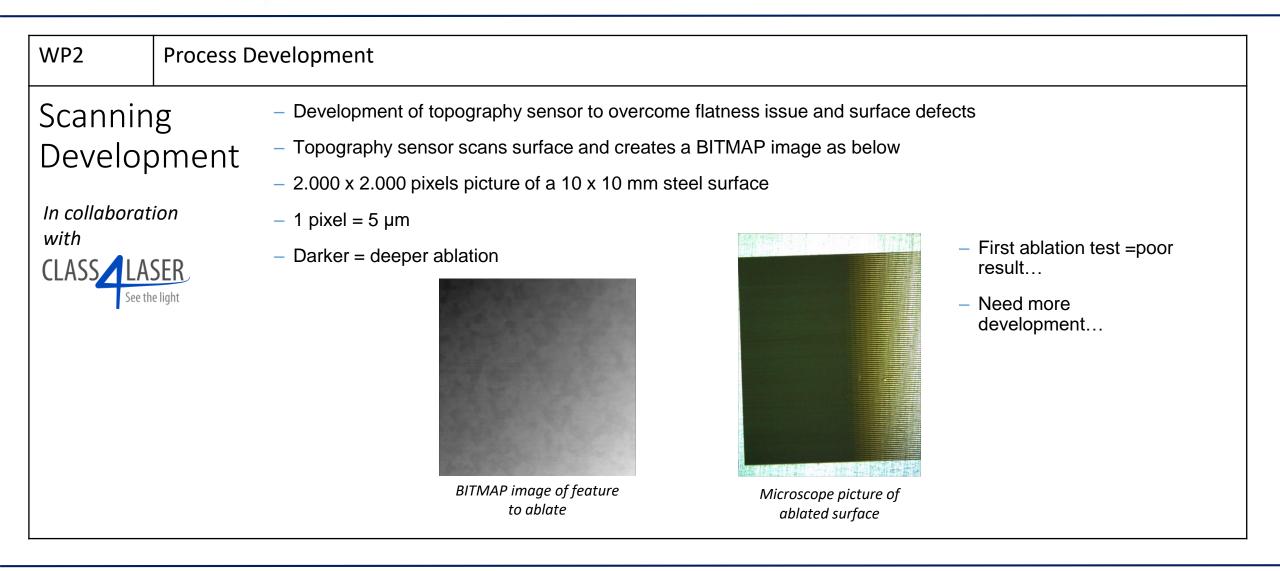
Pre Trials - 5 W Femtosecond Laser fully set up for pre-trails

 Ablation of PCD surface with 5 W Femtosecond Laser to establish window of parameters required for HIPERDIAS machine development

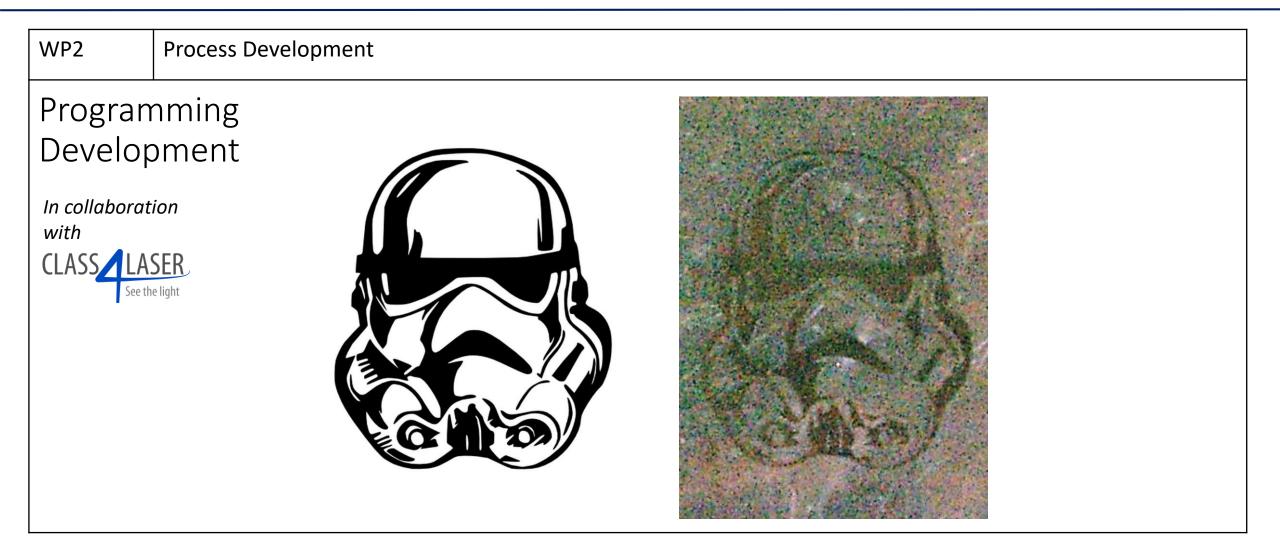


IPERDIAS Consortium Meeting - Stuttgart - 13/09/2016

WP1	Definition of user requirements												
Pre Tria Results	of 1.3	vement o 6 mJ/mm nmark val	12			Ū).14 – 0	.34 µm v	with inte	ensity
	Mechanically polished PCD surface								Laser	ablated	PCD sı	urface	
	Seg.1	Rp 1.46um	Rv 1.14um	Rz 2.61um	Ra 0.13um	Rq 0.1ôum		Seg.1	Rp 3.17um	Rv 2.79um	Rz 5.95um	Ra 0.34um	Rq 0.45um
	oog i	Rp	Rv	Rz	Ra	Rq		ong. 1	Rp	Rv	Rz	Ra	Rq
	Seg.1	0.56um	0.45um	1.01um	0.04um	0.06um		Seg.1	0.56um	0.98um	1.54um	0.14um	0.18.m



WP1	Definitio	on of user requirements									
Laser											
Technolo Specifica	ogy	PARAMETER 1 st step processing 2 nd step processing									
Specifica	tion	GOAL	Highest removal rate while lowering surface roughness of PCD surface	Lower removal rate while achieving lowest surface roughness possible to reach polished surface state							
		Power Average	High power average : 200 W Possibility to test 500 W?	Lower power average							
		Pulse Width	Few hundred femtoseconds to few picoseconds	Few hundred femtoseconds							
		Frequency	Over 1 MHz	Over 1 MHz							
		Wavelength	1030 nm (no special requirement)	1030 nm (no special requirement)							



THANK YOU

Contribution of GLOphotonics GLOphotonics

J.Alibert

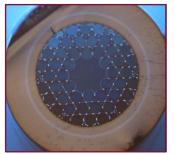
GLOphotonics 123 Avenue Albert Thomas 87000, Limoges, France

HIPERDIAS Consortium Meeting - Stuttgart - 13/09/2016

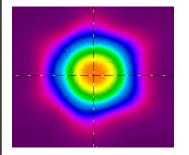
WP4	Photonic components for pre and post pulse conditioning	
	D4.4 task / Objective : Design, Fabrication and characterizati	on of PMC module for beam delivery
o Desig	 <u>e MS4 – (T0+6)</u> n a PMC module including HC-PCF fiber from GLOphotonics standard integrated in coupling optics and compact design Gas & vacuum management Robust fiber housing nbly and test prototype#1 Internal characterization with USP laser 	
	 Specification sheet production 	GLOphotonics

WP4

Photonic components for pre and post pulse conditioning

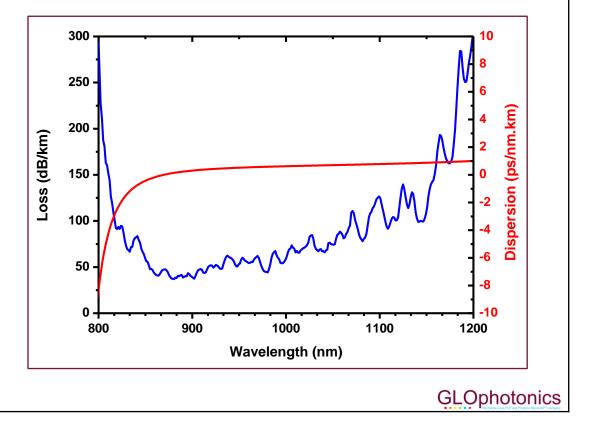

Design a PMC module including / HC-PCF fiber from GLOphotonics standard

Mode Field Diameter (1/e²)


3 dB bend loss radius @1030 nm

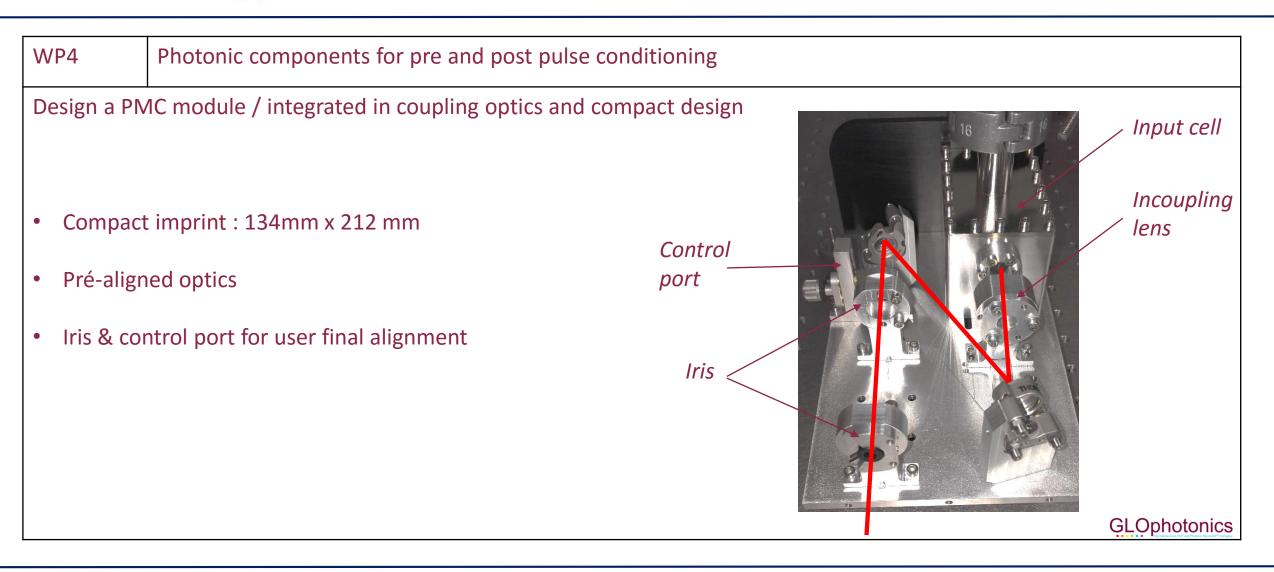
for the 900-1100nm

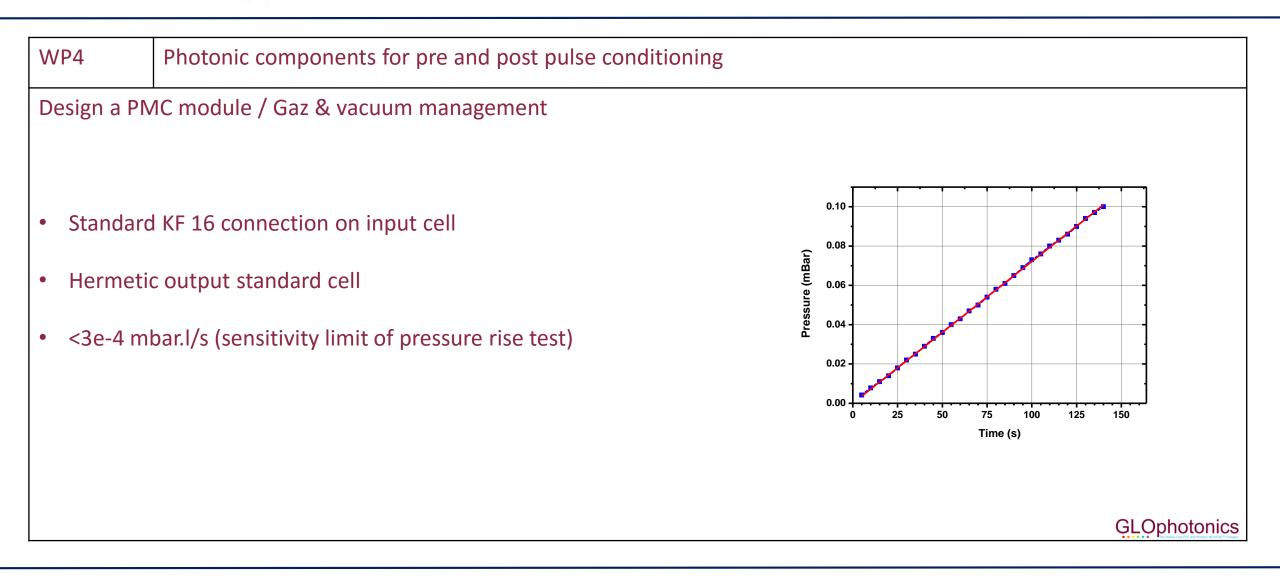
PMC-C-Yb-7C



Optical micrograph of fiber end facet

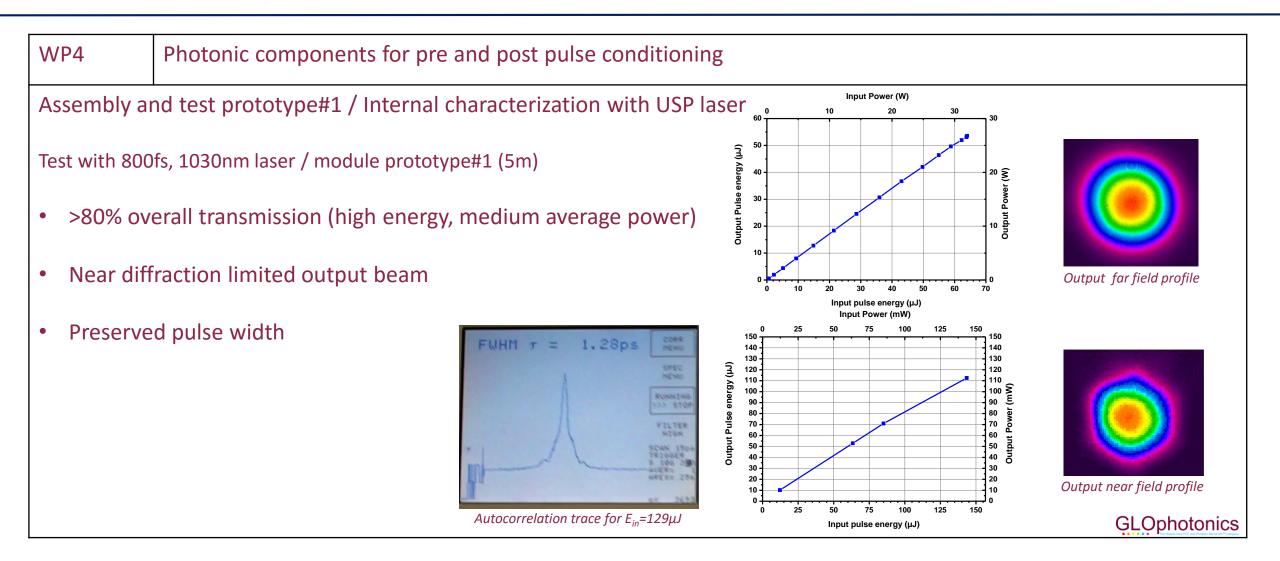
Typical output near field profile @ 1030nm


Physical Properties						
Core contour	Hypocycloid with negative curvature parameter <i>b=1</i>					
Inner Core Diameter	57 μm ± 1					
Outer Fiber Diameter	320 μm ± 1					
Fiber Coating Layer	Primary polymer coating					
Optical Proper	ties					
Center Wavelength	1030 nm					
Attenuation @ 1030 nm	50 dB/km ± 5					
Dispersion @1030 nm	1 ps/nm/km ± 0.5					
Transmission band** **Attenuation lower than 100 dB/km	>300nm					



39 µm ± 1

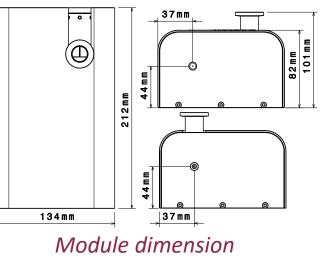
5 cm ± 2

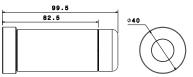


IPERDIAS Consortium Meeting - Stuttgart - 13/09/2016

WP4

Photonic components for pre and post pulse conditioning

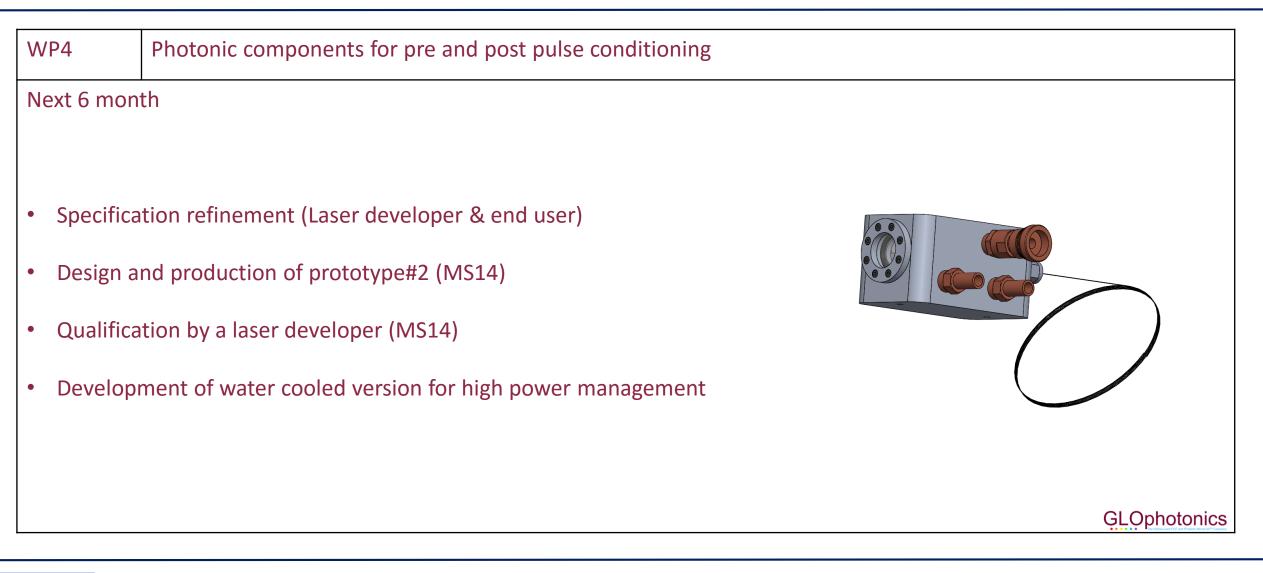

Assembly and test prototype#1 / Specification sheet production


Physical Properties

Fiber length	2 m ,3 m, 5 m
Output beam quality	M²<1.3
Gas/Vacuum Connexion	KF16
Fiber Protection	Metallic monocoil
Monocoil OD ⁽¹⁾	11.3 mm
Output ⁽¹⁾	Sealed rounded cell compatible with optional collimation

Optical Properties

Center Wavelength	1030 nm
Transmission	>80%
Dispersion @ Center Wavelength	1 ps/nm/km ± 0.5
Transmission band ^{**} **Attenuation lower than 100 dB/km	>200 nm
Input beam requirment	Collimated 2.5 mm ± 0.1
Min bend radius	20 cm ± 2
Max input power	50 W
Max input pulse energy	500 µJ



Output cell dimension

GLOphotonics

IPERDIAS Consortium Meeting - Stuttgart - 13/09/2016

WP8	Dissemination & Exploitation (partner activities)
	w international conference:
1. Maurel submitt	M., Gorse A., Beaudou B., Lekiefs Q., Debord B., Gerome F., Benabid F.: « Kagome fiber based industrial laser beam delivery», Photonic West 2017 ed.

WP9 Project Management

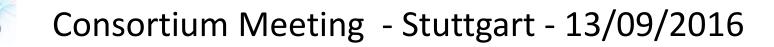
Julie Devall

WP9 Project Management

T9.1	Management and coordination of the project
T9.2	Financial management of the project
T9.3	Management of ethical and gender related issues
T9.4	Establishment of consortium bodies, and of consortium meetings
T9.5	Management of the consolidation of technical and financial reports
T9.6	Monitoring and progress chasing and submission of deliverables and milestones

WP9 Project Management

Deliverable	Deliverable Title				
D9.1	Project management handbook				
D9.2	1st Periodic Report				
D9.3	2nd Periodic Report				
D9.3	2nd Periodic Report				
D9.4	3rd Periodic Report & Final Report				
D9.4	3rd Periodic & Final Reports				


Milestones MS2 Project Handbook MS9 Completion of financial dry-run with partners	WP9	Project Management	
	Vilesto	nes	
MS9 Completion of financial dry-run with partners	MS2	Project Handbook	
	MS9	Completion of financial dry-run with partners	

- Quick overview
- Tasks Started / being monitored
- Deliverables Submitted
- Milestones Achieved

- Quick overview
- Tasks Started / being monitored
- Currently 31 "active tasks"
- > 2 completed

HIPFRDIA

- > 2 to start on the horizon (within the reporting period)
- Total 35 tasks to report on in our yearly periodic reporting

WP No	WP Leader	Lead B	Participants	T.no	Task Description	Start	S.Date	Finish	F. Date
WP1	BOSCH	BOSCH	BOSCH,E6,C4L	T1.1	Collection of end-user application specifications	1	01/02/2016	4	31/05/2016
WP1	BOSCH	LASEA	C4L	T1.4	Interface requirements	1	01/02/2016	12	31/01/2017
WP4	XLIM	USTUTT	AMP,AMO	T4.1	Design of grating compressors	1	01/02/2016	18	31/07/2017
WP5	USTUTT	USTUTT	USTUTT	T5.1	Design of the thin-disk multipass amplifier	1	01/02/2016	6	31/07/2016
WP8	KITE	KITE	ALL	T8.1	Web site	1	01/02/2016	42	31/07/2019
WP8	KITE	KITE	ALL	T8.2	Dissemination	1	01/02/2016	42	31/07/2019
WP8	KITE	KITE	ALL	T8.5	Management of Intellectual Property	1	01/02/2016	42	31/07/2019
WP9	USTUTT	KITE	KITE	T9.1	Management and coordination of the project	1	01/02/2016	42	31/07/2019
WP9	USTUTT	KITE	KITE	T9.2	Financial management of the project	1	01/02/2016	42	31/07/2019
WP9	USTUTT	KITE	KITE	T9.3	Management of ethical and gender related issues	1	01/02/2016	42	31/07/2019
WP9	USTUTT	KITE	KITE	T9.4	Establishment of consortium bodies, and of consortium meetings	1	01/02/2016	42	31/07/2019
WP9	USTUTT	KITE	KITE	T9.5	Management of the consolidation of technical and financial reports	1	01/02/2016	42	31/07/2019
WP9	USTUTT	KITE	KITE	T9.6	Monitoring and progress chasing and submission of deliverables and milestones	1	01/02/2016	42	31/07/2019

WP No	WP Leader	Lead B	Participants	T.no	Task Description	Start	S.Date	Finish	F. Date
WP1	BOSCH	BOSCH	ALL	T1.2	Process and system specifications	2	01/03/2016	12	31/01/2017
WP1	BOSCH	BOSCH	C4L, E6	T1.3	Assessment and validation of technical progress	3	01/04/2016	12	31/01/2017
WP2	USTUTT	BOSCH	LASEA	T2.1	Fundamental process development 3D Si processing	3	01/04/2016	24	31/01/2018
WP2	USTUTT	C4L	USTUTT	T2.2	Fundamental process development fine cutting of metals	3	01/04/2016	23	31/12/2017
WP2	USTUTT	E6	C4L	T2.3	Fundamental process development diamond ablation	3	01/04/2016	23	31/12/2017
WP3	AMP	AMP	USTUTT	T3.1	50-W, 300-fs laser >1MHz at 1030nm	3	01/04/2016	9	31/10/2016
WP3	AMP	AMP	USTUTT, AMO	T3.2	200-W, ~500-fs laser >1MHz at 1030nm	3	01/04/2016	21	31/10/2017
WP3	AMP	AMP	ALL	T3.3	Flexible user interface including high speed modulation a high power pulse train	3	01/04/2016	21	31/10/2017
WP4	XLIM	AMO	USTUTT	T4.2	Development of a lithography process for the fabrication of pulse compression gratings	3	01/04/2016	30	31/07/2018
WP4	XLIM	GLO	AMP, XLIM	T4.4	Fabrication and characterization of photonic microcell (PMC) module	3	01/04/2016	36	31/01/2019
WP6	C4L	LASEA	AIVIP,C4L,BOSCH E6	T6.1	Definition of interfaces	3	01/04/2016	12	31/01/2017
WP6	C4L	USTUTT	EG AIVIP, CALLASEA GLO	T6.2	Definition of laser & optics sizes; optics specifications (incl. fibre)	3	01/04/2016	15	30/04/2017
WP4	XLIM	AMO	USTUTT	T4.3	Development of an etching process for the fabrication of optical components	5	01/06/2016	30	31/07/2018

WP No	WP Leader	Lead B	Participants	T.no	Task Description	Start	S.Date	Finish	F. Date
WP5	USTUTT	USTUTT	AMP	T5.2	Assembly & characterization of Yb:YAG thin-disk multipass amplifier	6	01/07/2016	22	30/11/2017
WP8	KITE	KITE	ALL	T8.3	Exploitation	7	01/08/2016	42	31/07/2019
WP8	KITE	KITE	ALL	T8.4	Intellectual property and supply chain	7	01/08/2016	42	31/07/2019
WP8	KITE	KITE	ALL	T8.6	Training	7	01/08/2016	42	31/07/2019
WP6	C4L	C4L	LASEA	T6.3	Development of the interfaces	8	01/09/2016	22	30/11/2017
WP6	C4L	C4L	USTUTT,AMP, LASEA	T6.4	System layout and build-up	8	01/09/2016	36	31/01/2019
WP6	C4L	C4L	USTUTT, AMP, LASEA	T6.5	Integration of laser and optics	8	01/09/2016	24	31/01/2018
WP4	XLIM	GLO	AMP, XLIM	T4.5	Design/Fabrication of photonic microcell module with integrated coupling optics	12	01/01/2017	36	31/01/2019
WP4	XLIM	XLIM	GLO	T4.6	Design and Fabrication of polarization maintaining hollow-core photonic crystal	12	01/01/2017	36	31/01/2019

• Quick overview

HIPERDIAS

Deliverables (retrospective review)

Due Month	DoA Month	WP No	Deliverable	Deliverable Title	Lead Beneficiary	Submitted?
1	Feb-16	WP9	D9.1	Project management handbook	KITE	Yes
3	Apr-16	WP8	D8.1	Project website established	KITE	Yes
3	Apr-16	WP8	D8.2	Communication kit	KITE	Yes
4	May-16	WP1	D1.1	End-user application specifications	BOSCH	Yes
4	May-16	WP4	1 1)4.1	Report on simulation of pulse compression gratings with diffraction efficency >=99% over large spectral bandwith (5-10 nm) around 1030 nm	USTUTT	Yes
4	May-16	WP8	D8.3	Video presentation of the Hiperdias project	KITE	No
6	Jul-16	WP5	D5.1	Design of the multi-pass amplifier	USTUTT	Yes

Quick overview

HIPERDIAS

Deliverables (on horizon in this reporting period)

Due Month	DoA Month	WP No	Deliverable	Deliverable Title	Lead Beneficiary
9	Oct-16	WP3	D3.1	50-W, 300-fs,>1-MHz laser for seeding an Yb:YAG amplier (1)	AMP
9	Oct-16	WP3	D3.2	50-W, 300-fs,>1-MHz laser for seeding an Yb:YAG amplier (2)	AMP
12	Jan-17	WP1	D1.2	Process and system specifications	E6
12	Jan-17	WP1	D1.3	Prototypes and progress validation	BOSCH
12	Jan-17	WP1	D1.4	Definition of software-technical Interface	LASEA
12	Jan-17	WP4	D4.2	Report on first fabrication of pulse compression grating with 98% diffraction efficiency on large area, rectangluar substrate material	AMO
12	Jan-17	WP6	D6.1	Definition of interfaces	LASEA
12	Jan-17	WP8	D8.4	Draft exploitation and dissemination plan	KITE
12	Jan-17	WP9	D9.2	1st Periodic Report	USTUTT

Quick overview

HIPERDIAS

Milestones (achieved so far)

- MS1 Press Release WP8 Kite M01
- MS2 Kick-off Meeting and election of Consortium Bodies WP8 Kite M02
- MS3 First Design high efficient grating mirrors WP4 USTUTT M03
- MS4 PMC Module for fibre beam delivery prototype -WP4 GLO M06

Milestones (on horizon)

- MS5 Specification for laser parameters established –WP1 –BOSCH M08 (Due now)
- MS6 1st generation grating mirror on large area rectangular substrates fabricated WP4 AMO M08 (Due now)
- MS7 Interface definition fixed WP1,WP3, WP6 LASEA M08 (Due now)
- MS8 A 50w, 300 fs at >1mhz seed laser WP3 AMP M09
- MS9 Completion of financial reporting "dry run" with all partners –WP9 M09
- MS10 Key performance indicators for productivity progress specified WP1 BOSCH M10
- MS11 Key performance indicators for quality standards specified WP1 BOSCH M12
- MS12 Specification for system technology established WP1 BOSCH M12
- MS13 Fully optical characterisation of grating mirror regarding diffraction efficiency and LIDT WP4 AMO M12

Quick overview

HIPERDIAS

Milestones (on horizon continued)

- MS14 PMC module for fibre beam delivery prototype #2 WP4 –GLO M12
- MS15 Design of HC-PCF with improved PER at 1 um (>20 dB) WP4 XLIM M12
- MS16 System layout fixed WP3, WP4, WP5, WP6 C4L M12

Quick overview

HIPERDIAS

Milestones (on horizon continued)

- MS14 PMC module for fibre beam delivery prototype #2 WP4 –GLO M12
- MS15 Design of HC-PCF with improved PER at 1 um (>20 dB) WP4 XLIM M12
- MS16 System layout fixed WP3, WP4, WP5, WP6 C4L M12

IPERDIAS Consortium Meeting - Stuttgart - 13/09/2016

WP9 Project Management (Periodic Reporting)

Technical Report – Project Coordinator's Project Summary (for the period)

• Project Summary – to be completed by the coordinator

The Project Coordinator is expected to answer the following questions;

- Summary of the context and overall objectives of the project
- Work performed from the beginning of the project to the end of the period covered by the report
- Progress beyond the state of the art and expected potential impact (including the socio-economic and the wider societal implications of the project so far)
- Address (URL) of the projects public website
- Any supporting documents (images etc.)

Technical Report - All WP Leader updates (for the period)

- All WP Leaders to provide an overall summary of the progress so far for the period
- To break down the summary at task level
- Name the participants involved in each of the tasks
- Describe any deviations from the Description of Work (resources, timescales, scope)
- Describe any corrective actions that took place on the WP to rectify any deviations

Work package no.	WP 1	Plan-Start:		Plan-End:	12		
Lead Participant	5-BOSCH	Actual-Start:		Actual-End:			
Work package title	Definition of User Requ	uirements					
Activity Type	RTD						
Participant involved BOSCH, USTUTT, AMP, C4L, AMO, XLIM, LASEA, GLO, E6							
Work package summa	ry of progress towards obj	ectives					
Please provide an	overall summary of th	ne period here					

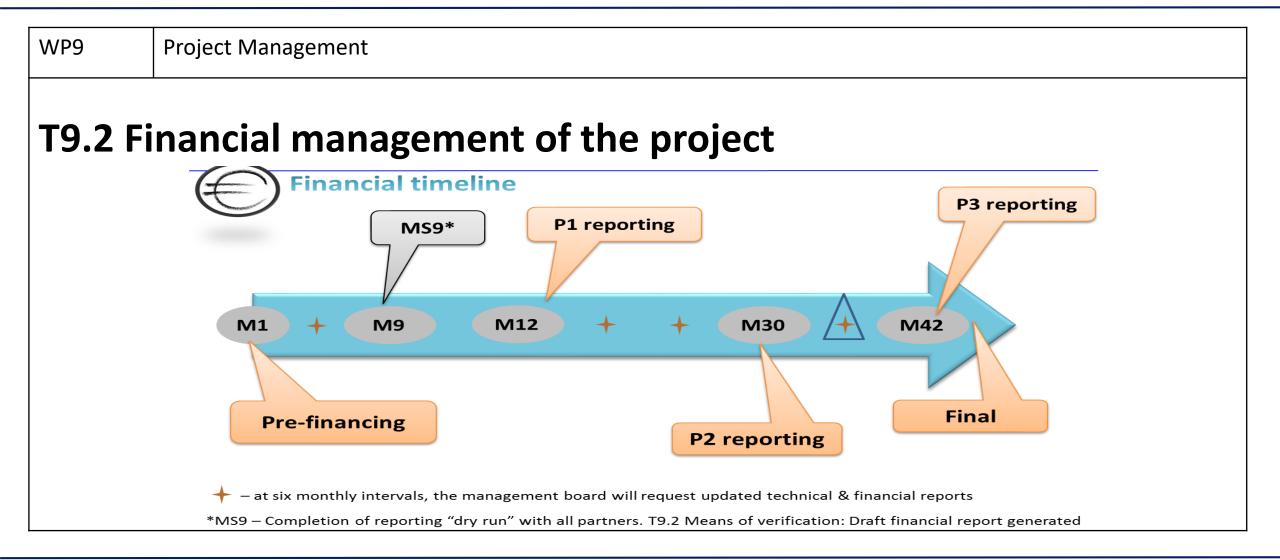
Task no.	T1.1	Plan-Start:	M1	Plan-End:	M4
Lead Participant	BOSCH	Actual-Start:		Actual-End:	1
Task title	Collection of e	nd-user application	speci	fications	
Participant involved	C4L, E6				
Progress of work;					
Your update here					



WP1 Deliverables and Mile	stones due in this period		
Lead Participant	BOSCH	Date due:	Date submitted:
Deliverable no. & title	D1.1 End-user appl	ication specifications	
Participant involved			
Progress of work			
Your update here			

https://ec.europa.eu/research/participants/grants-app/reporting/DLV-687880

 WP9
 Project Management


 Task 9.3 Management of ethical and gender related issues (USTUTT, KITE M01 – M42)

 The HIPERDIAS Consortium takes seriously issues related to ethics in science and gender aspects. Their management is detailed in Section 1.3. Monitoring and reporting will carried out by the CPO. At the end of the project, ethical and gender related issues will be covered in the final report, under the heading 'awareness and wider societal implications'.

Grant Management	roject Continuous Report		go Fund 2
Image: Contract C	Bender		
ender			SAV
ender Dimension in the Project 🔟			
Does the project include a gender dimension in research? \odot Yes \odot No ender of R&D participants involved in the project \blacksquare			
Does the project include a gender dimension in research? \odot Yes \odot No	 Number of Female participants 	Number of Male participants	Total Number of participants
Does the project include a gender dimension in research? Or Yes No ender of R&D participants involved in the project ease include in the count the participants working for Third Parties (if appropriate)	Number of Female participants	Number of Male participants	Total Number of participants
Does the project include a gender dimension in research? Orygent No ender of R&D participants involved in the project I ease include in the count the participants working for Third Parties (if appropriate) Organisation	Number of Female participants	Number of Male participants	Total Number of participants 0 0
Does the project include a gender dimension in research? Organisation ender of R&D participants involved in the project ease include in the count the participants working for Third Parties (if appropriate) Organisation I - UNIVERSITAET STUTTGART	Number of Female participants	Number of Male participants	0
Does the project include a gender dimension in research? Yes No ender of R&D participants involved in the project ease include in the count the participants working for Third Parties (if appropriate) Organisation UNIVERSITAET STUTTGART A AMPLITUDE SYSTEMES SA	Number of Female participants	Number of Male participants	0
Does the project include a gender dimension in research? Yes No ender of R&D participants involved in the project ease include in the count the participants working for Third Parties (if appropriate) Organisation I UNIVERSITAET STUTTGART AMPLITUDE SYSTEMES SA CLASS 4 LASER PROFESSIONALS AG	Number of Female participants	Number of Male participants	0 0 0
Does the project include a gender dimension in research? Yes No ender of R&D participants involved in the project ease include in the count the participants working for Third Parties (if appropriate) Organisation UNIVERSITAET STUTTGART A - AMPLITUDE SYSTEMES SA - CLASS 4 LASER PROFESSIONALS AG - GESELLSCHAFT FUR ANGEWANDTE MIKRO UND OPTOELEKTRONIK MIT BESCHRANKTERHAFTUNG AMO GMBH	Number of Female participants	Number of Male participants	0 0 0 0
Does the project include a gender dimension in research? Yes No ender of R&D participants involved in the project ease include in the count the participants working for Third Parties (if appropriate) Organisation 1 - UNIVERSITAET STUTTGART 2 - AMPLITUDE SYSTEMES SA 3 - CLASS 4 LASER PROFESSIONALS AG 4 - GESELLSCHAFT FUR ANGEWANDTE MIKRO UND OPTOELEKTRONIK MIT BESCHRANKTERHAFTUNG AMO GMBH 5 - ROBERT BOSCH GMBH 5 - UNIVERSITE DE LIMOGES 7 - LASER ENGINEERING APPLICATIONS SA	Number of Female participants	Number of Male participants	
Dees the project include a gender dimension in research? • Yes • No ender of R&D participants involved in the project • ease include in the count the participants working for Third Parties (if appropriate) Corganisation CORGANISA	Number of Female participants	Number of Male participants	
Does the project include a gender dimension in research? Yes No ender of R&D participants involved in the project ease include in the count the participants working for Third Parties (if appropriate) Organisation 1 - UNIVERSITAET STUTTGART 2 - AMPLITUDE SYSTEMES SA 3 - CLASS 4 LASER PROFESSIONALS AG 4 - GESELLSCHAFT FUR ANGEWANDTE MIKRO UND OPTOELEKTRONIK MIT BESCHRANKTERHAFTUNG AMO GMBH 5 - ROBERT BOSCH GMBH 5 - UNIVERSITE DE LIMOGES 7 - LASER ENGINEERING APPLICATIONS SA	Number of Female participants	Number of Male participants	

WP9		Pro	oject Management																
					Pre-financing distribution			on							To	tal check = net			
	Partn	ner	Total EU						Guarantee		Total Net	9	0% limit of		Max interim		Max final	r	ore finance +
Partner	shor	rt	Contribution		Received		Fund		amount		max grant	pa	yments during	ра	yment at the		iod payment +		
	Nam	ne	(€)					tr	ansferrable		amount		project	e	nd of project	fi	nal payment		
1	USTUT	П	€ 909,187.50	€	393,950.94	€	45,459.38	€	348,491.57	€	818,268.75	€	424,317.81	€	136,378.13	€	909,187.50		
2	AMP		€ 555,750.00	€	240,806.48	€	27,787.50	€	213,018.98	€	500,175.00	€	259,368.52	€	83,362.50	€	555,750.00		
4	AMO		€ 371,742.50	€	161,076.03	€	18,587.13	€	142,488.90	€	334,568.25	€	173,492.22	€	55,761.38	€	371,742.50		
5	BOSCH	H	€ 499,002.50	€	216,217.78	€	24,950.13	€	191,267.66	€	449,102.25	€	232,884.47	€	74,850.38	€	499,002.50		
6	XLIM		€ 299,500.00	€	129,773.35	€	14,975.00	€	114,798.35	€	269,550.00	€	139,776.65	€	44,925.00	€	299,500.00		
7	LASEA	\	€ 441,750.00	€	191,410.28	€	22,087.50	€	169,322.78	€	397,575.00	€	206,164.72	€	66,262.50	€	441,750.00		
8	GLO		€ 289,750.00	€	125,548.68	€	14,487.50	€	111,061.18	€	260,775.00	€	135,226.32	€	43,462.50	€	289,750.00		
9	E6		€ 123,417.50	€	53,476.80	€	6,170.88	€	47,305.93	€	111,075.75	€	57,598.95	€	18,512.63	€	123,417.50		
	E6 UK		€ 8,832.50	€	3,827.12	€	441.63	€	3,385.50	€	7,949.25	€	4,122.13	€	1,324.88	€	8,832.50		
10	KITE		€ 141,375.00	€	61,257.79	€	7,068.75	€	54,189.04	€	127,237.50	€	65,979.71	€	21,206.25	€	141,375.00		
то	TAL		€ 3,640,307.50	€	1,577,345.24	€	182,015.38	€	1,395,329.87	€	3,276,276.75	€	1,698,931.51	€	546,046.13	€	3,640,307.50		

WP9 Proje

Project Management

Financial Reporting

We are reporting on all costs which are eligible

- Actual and incurred during the project
- Needed solely for work on the project
- Recorded in the accounts
- Salary costs should be backed up by timesheets

WP9	Project Management
Finar	ncial Reporting
Exan	nples of ineligible costs
• Ex	change rate losses
• Co	osts already considered
• Co	osts already included in "indirect costs"
• Co	osts which may be considered excessive
	ember if you exceed 325,000 during the course of the project, you will be required
to ca	rry out an audit by an external auditor

Remember to keep all records as the EU at any time can carry out their own audit

WP9

Project Management

Indirect Costs

Are costs that are not directly linked to the action implementation and therefore cannot be attributed directly to it.

Indirect costs are eligible if they are declared on the basis of the **flat-rate of 25% of the eligible direct costs** (see Article 5.2), from which are excluded:

- costs of subcontracting and
- costs of in-kind contributions provided by third parties which are not used on the beneficiary's premises;

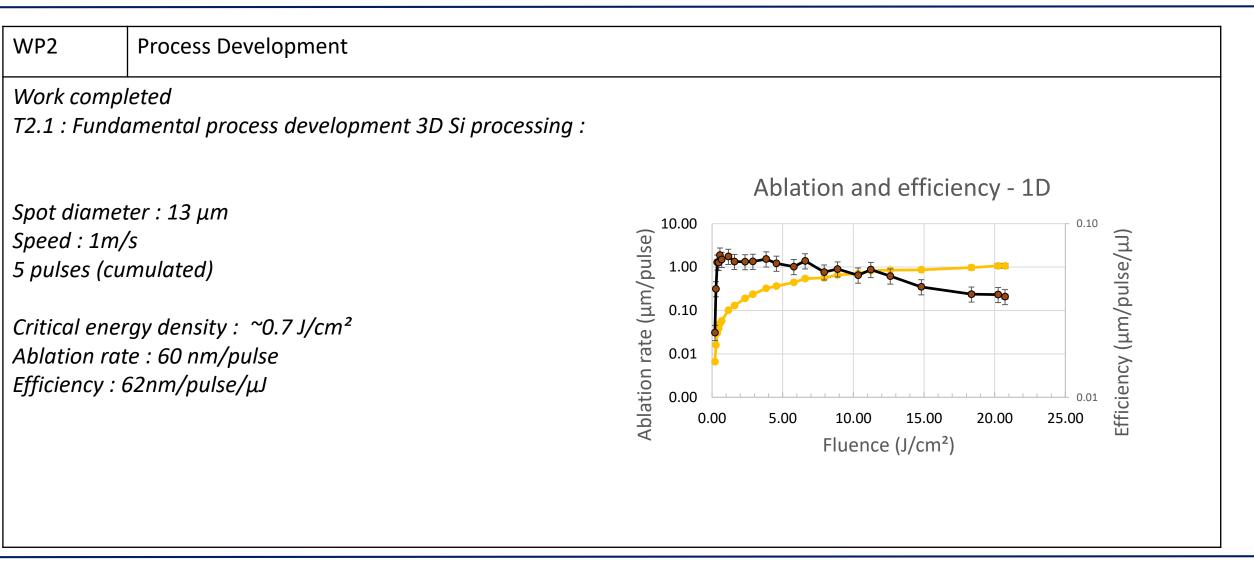
WP9	Project Management
Financial	Dry run – to be complete by 1 st Nov
spreaasn	eet sent out to financial partners, complete by 3 rd week of Oct.

- Please provide an update of the progress made so far on the project by Work package, any deliverables you have contributed to and milestones worked on.
- You may present this by whatever means you see fit (i.e. include photos, link to video etc) but please use this official Hiperdias template.
- It may be the case that you have not worked on all work packages delete as appropriate
- You may add to the amount of slides here, simply duplicate the format

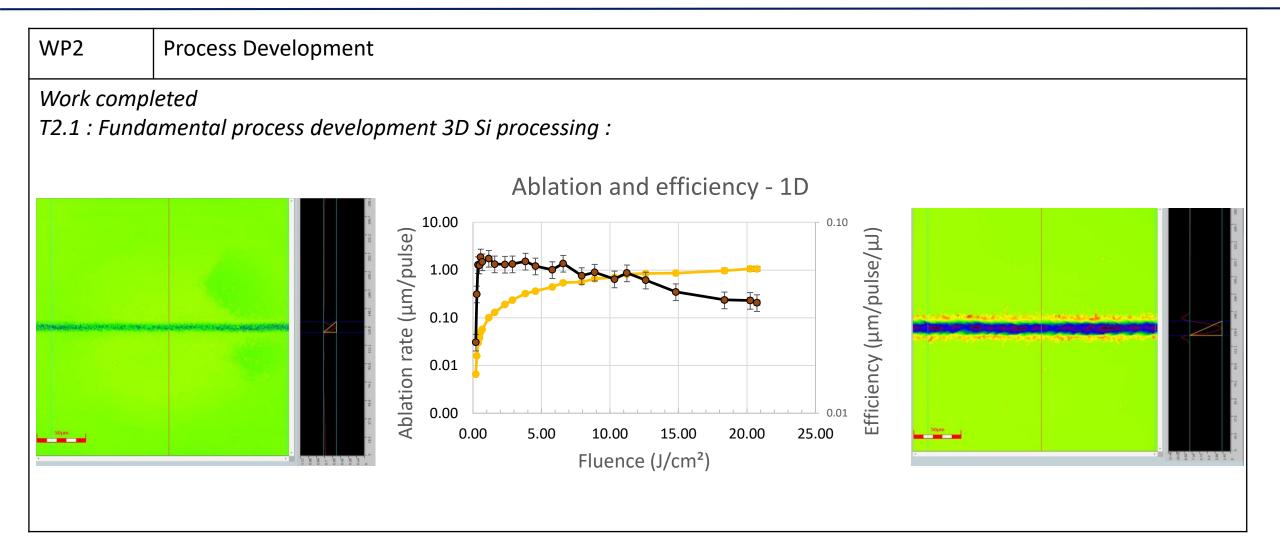
• Delete this information slide from your final presentation

WP1 Definition of user requirements Work completed T1.4 : Definition of the interfaces : Description of the task: Definition of the requirements of the software/technical interfaces to be developed. These activites will focus on aspects as electrical, mechanical, and optical and software interfaces between the different units (laser, scanner, axis, opto-mechanical element). *Create and provide a document that defines and lists all the interfaces between the different components of the system.* This document is a living document to be completed during the definition tasks. Every partner has to fill its corresponding tab with the different interfaces details of the component(s) he is in charge, and if necessary to adapt it. This document gathers all information from the different partners for the different interfaces. Ŧ ¥ 3 ltem WP1 - Definition of User Requirements M1.1 M1.2 M1.3 Interfaces require Collection of end-user application specifications T1.1 D1.1 M1.4 ients USTUTT AM T1.2 Process and system specifications D1.2 Assessment and validation of technical progress D1.3 Interface requirements T1.4 D1.4

WP1	Definition of user requirements
Next 6 mon	ths
and propose	the document fully completed by all the involved partners. Highlight any mismatch between the different units e a solution. ed information will then be used in the T6.1 which consists in describing the technical details of interfaces that
will have to	be developed or modified by the different partners to overcome any mismatch.



WP2	Process Development		
Work comp	leted		
T2.1 : Funda	amental process development 3	3D Si processing	
The goal of This first stu	this study is to point out the be Idy revealed that the use of a n	carried out using an actual setup available at LA est conditions of machining in terms of laser par ot too high energy density should be used in or mum energy density can be determined which c	rameters and quality. der to avoid degradation of the
apparition of		ltem	MI MS MS MS MS MS MS MS M10 M11 M12
		WP2 - Process Development	
		T2.1 Fundamental process development 3D Siprocessing	
		T2.2 Fundamental process development fine cutting of metals	
		T2.3 Fundamental process development diamond ablation	
		T2.4 Upscaling of applications for high throughput	



WP2	Process Development							
During the next 6 months the volumic ablation rate will be investigated. The critical energy density determined allows to give an approximation of the corresponding focal length.								
		Power (W)	Pulse energy (mJ)	Pulse energy -20% losses (mJ)	Focal length (mm)	Max. Energy density (J/cm²)	Optical Spot Diameter (μm)	
		500	0,5	0,4	500	21	50	
•	diameter = ~15mm	1000	1	0,8	500	42	50	
Laser powe	500 W – 1000 W @1MHz	500	0,5	0,4	1000	5	100	
		1000	1	0,8	1000	10	100	

Next 6 months

During the next 6 months more experiments will be carried out in order to develop the processes requested (high speed ablation rate, drilling, edge steepness, ...)

WP6

Thin-disk Multi-pass Booster

Work completed

No work has been carried out during so far.

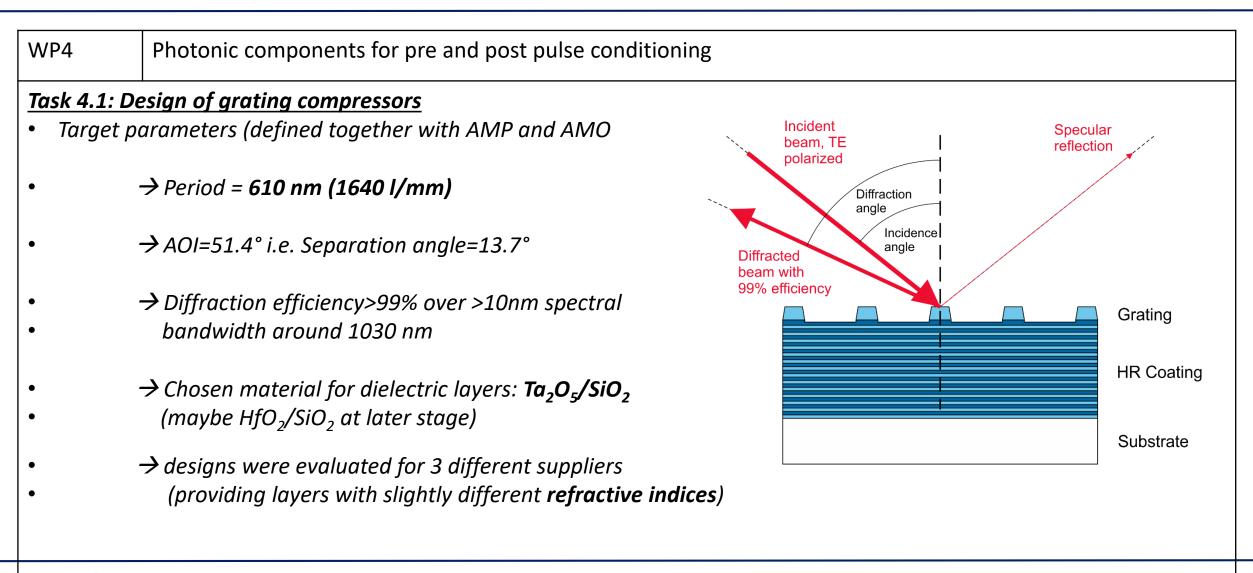
Next 6 months

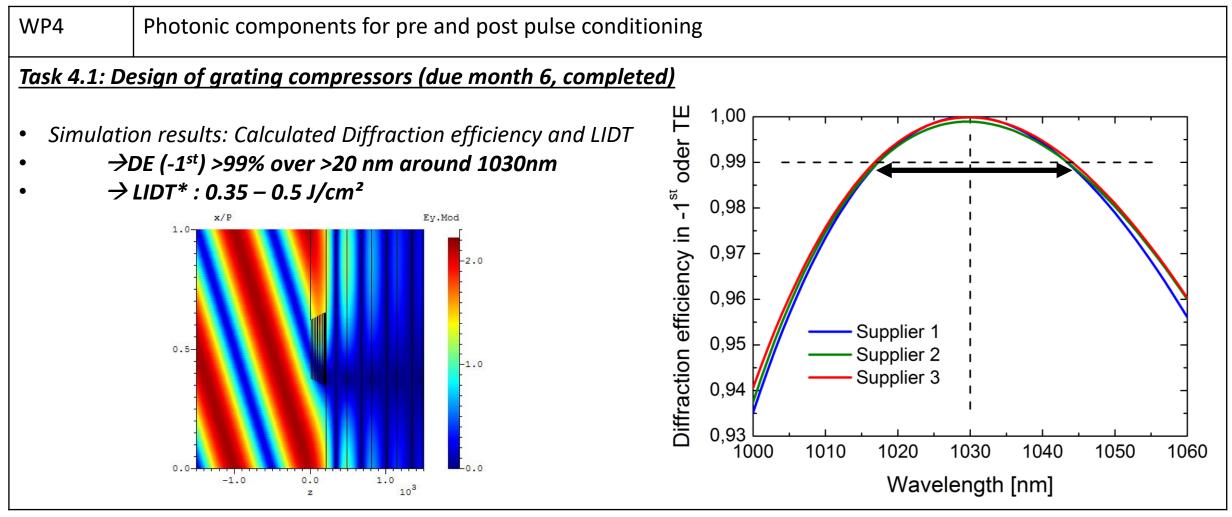
T6.1: Definition of interfaces : highlight mismatches in interfaces. Exchange with the partners in order to propose solutions and/or modifications.

	Item		M2	W3	¥	W2	SN Ng	ΔM	SN N	6W	M10	M	M12
	WP6- System development								M6.1				M6.2
T6.1	Definition of interfaces												D6.1
т6.2	Definition of laser & optics sizes; optics specifications (incl. fibre)												
T6.3	Development of the interfaces												
т6.4	System layout and build-up												
T6.5	Integration of laser and optics												
T6.6	Test and evaluation												

WP6	Thin-disk Multi-pass Booster
Next 6 m	ionths

WP8	Dissemination & Exploitation (partner activities)	
What dis	semination activities has your organisation taken to promote the Hiperdias project?	
Please li	st here and you may include images/photos etc.	


UNIERSITÄT STUTTGART (USTUTT), Institut für Strahlwerkzeuge (IFSW) (WP2, 4, 5 & 7)


WP2	Process Development
Work no	ot yet started for USTUTT

PERDIA

*Gallais et.al, APPLIED OPTICS / Vol. 53, No. 4 / 1 February 2014

PERDIA

Photonic components for pre and post pulse conditioning Task 4.1: Design of grating compressors 0.32 *Tolerances analysis: Calculated Diffraction efficiency and LIDT* 0.3 \rightarrow Groove depth = 210 nm (+/- 10-20 nm for a fixed DC) 0.28 \rightarrow Duty-cycle = 24% (+/- 2-3%, for a fixed groove depth) 0.26 Ы 0.24 Parameters were communicated to AMO for the production of the gratings 0.22 0.2 200 220 240 180 260 280

Groove-depth (nm)

300

WP4

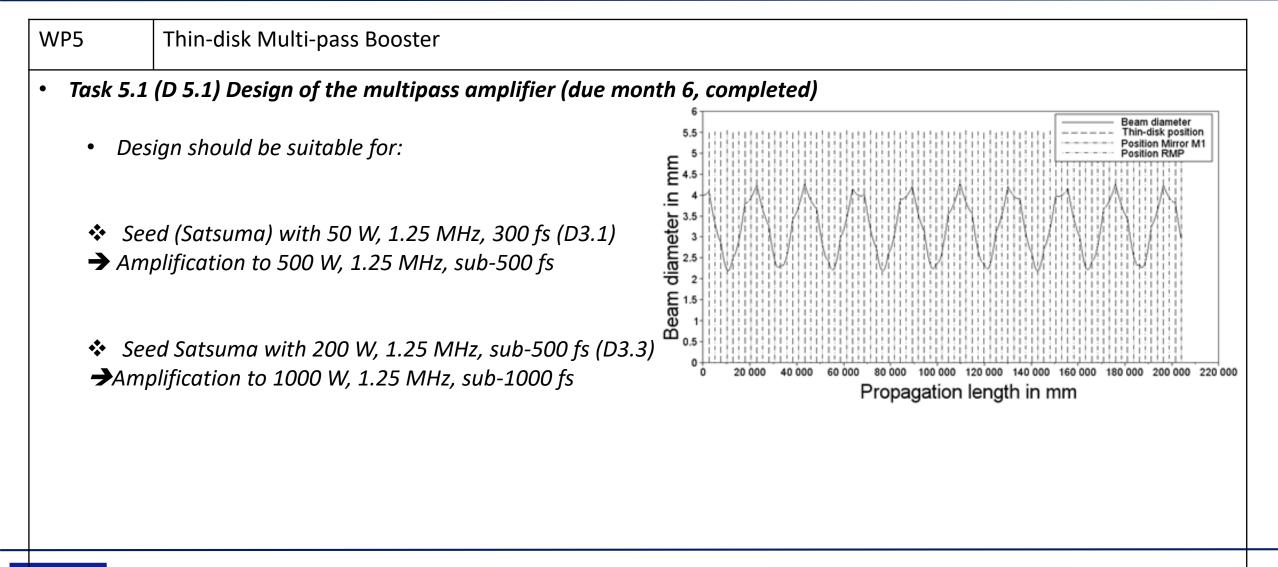
•

.

.

•

PERDIA

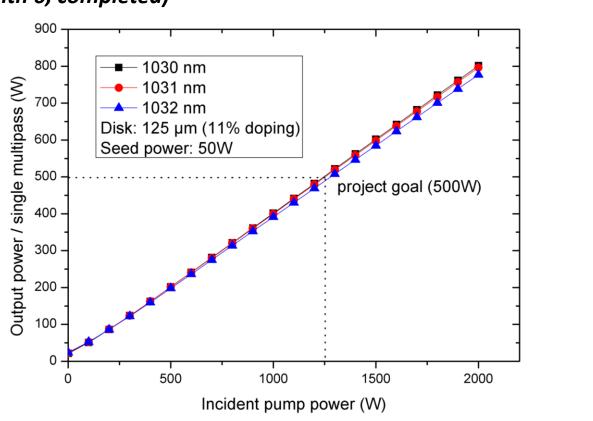

WP4

Photonic components for pre and post pulse conditioning

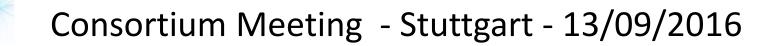
Next 6 months

- Task 4.2: Optical characterization of the fabricated gratings by AMO: measurement of diffraction efficiency over a spectral bandwidth of >20 nm around 1030 nm
- Design optimization (Task 4.1): design iteration taking into account the measured diffraction efficiency in order to identify the cause of deviations (in case some) from initial design.
- LIDT measurements (collaboration with an external partner)

- Task 5.1 (D 5.1) Design of the multipass amplifier (due month 6, completed)
 - Beam propagation simulated (scheme allows adaption if needed)
 - Amplification factor of >=10 needed!!!
 - → We decided (based on previous experiments) on a concept with **80 mirrors** in an array
 - → It allows 80 reflections on the disk in double-pass and 40 reflections in single-pass through the amplifier
 - → Single-pass will be needed to be able to pick single pulses (based on IP USTUTT proposed in the project RAZipol)

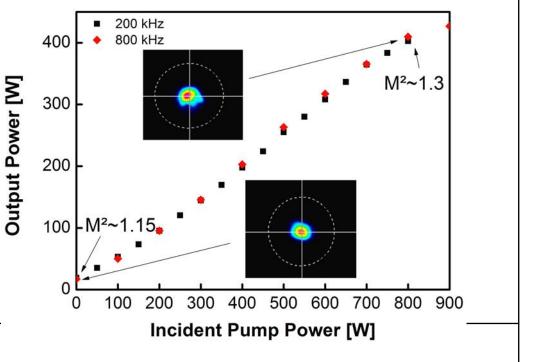


WP5 Thin-disk Multi-pass Booster


- Task 5.1 (D 5.1) Design of the multipass amplifier (due month 6, completed)
 - First (simplified) Simulation results of amplification
 - Slope efficiency ~ 40%

PEDIA

→ Challenge: Broad spectrum (6-8 nm) of fs pulses and center wavelength adaption of Satsuma to 1030 nm may influence the amplification process



WP5 Thin-disk Multi-pass Booster

• New experimental tests (within project Razipol) on amplification of fs pulses

- 40 W Seed power, 200/800 kHz, 805 fs (loaned seed)
- 60 passes over the disk (different disk than disk planed in Hiperdias)
- → 400 W of output power, 885 fs, 200/800 kHz
- ➔ Amplification of broad fs pulses is possible
- → We observe spectral broadening at high intensities
- → Here, compression to **sub-200 fs was possible**

WP5	Thin-disk Multi-pass Booster
Ongoing wo	ork and planned for the next months:
 Several c Few mor Working Assembly 	sembly & characterization of a Yb:YAG thin-disk multipass amplifier (Scheduled for M22) omponents already delivered e parts (optics, custom-designed mechanics and seed source) are still to be delivered on controls and safety of the amplifier y of amplifier ments and characterization
	cond and third harmonics generations (Scheduled for M20-M28): nd simulations have started
Tasks 5.4: Ir	ntegration of the Yb:YAG thin-disk multipass amplifier (not yet started)
Task 5.5: De	emonstration of a 1kW, sub-1ps laser system (not yet start)

WP7	Demonstrators
Work no	ot yet started for USTUTT

Deliveral	bles		
Number	Deliverable title	Delivery date	Current status
D 4.1	Report on simulation of pulse compression gratings with diffraction efficiency>=99% over large spectral bandwidth (5-10 nm) around 1030 nm.	M4	Submitted
D 5.1	Design of multipass amplifier	M6	submitted
D 5.2	Thin-disk multipass amplifier with 500W, 1MHz, sub-500fs	M22	Not yet Submitted
D 5.3 D 5.4	Demonstration of 200W green and 100W UV laser beams at 1MHz and sub-500 fs pulse Thin-disk multipass amplifier with 1000W, >=1MHz, sub-1ps	M28 M38	Not yet Submitted Not yet Submitted

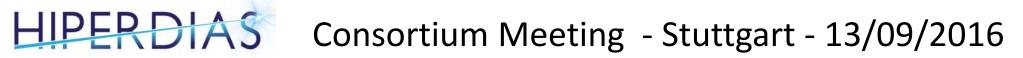
	Miles	stones		
Number		Milestone title	Estimated date	Current status
M 4.1		First design, high efficient grating mirrors	M3	Achieved
M 4.4		Fully optical characterization of grating mirror regarding diffraction efficiency and LIDT	M12	Not yet achieved
M 4.8		Demonstration of optimized grating mirrors, 99% diffraction efficiency	M18	Not yet achieved
M 5.1		Yb:YAG thin-disk multipass amplifier delivering 500W at a sub-500fs pulse duration and a repetition rate >=1MHz.	M22	Not yet achieved
M 5.2		Demonstration of a 200W green and 100W UV laser beams at 1MHz and sub-500 fs pulse.	M28	Not yet achieved
M 5.3		Yb:YAG thin-disk multipass amplifier delivering 1000W at a sub-1ps pulse duration and a repetition rate >=1MHz.	M38	Not yet achieved

Thank you for your attention

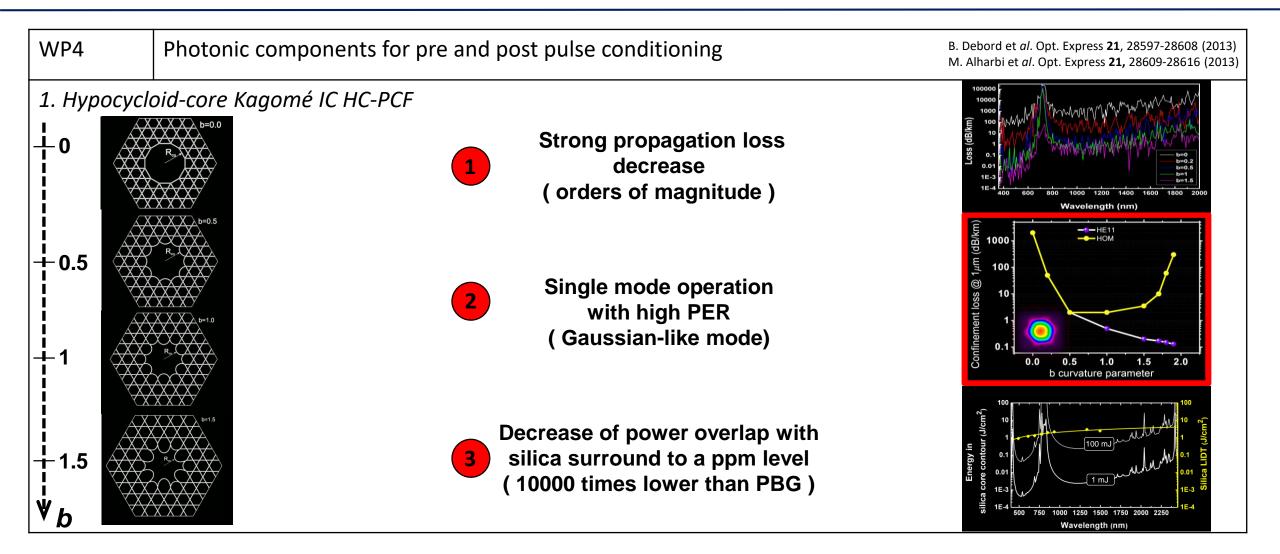
Contribution of XLIM-GPPMM

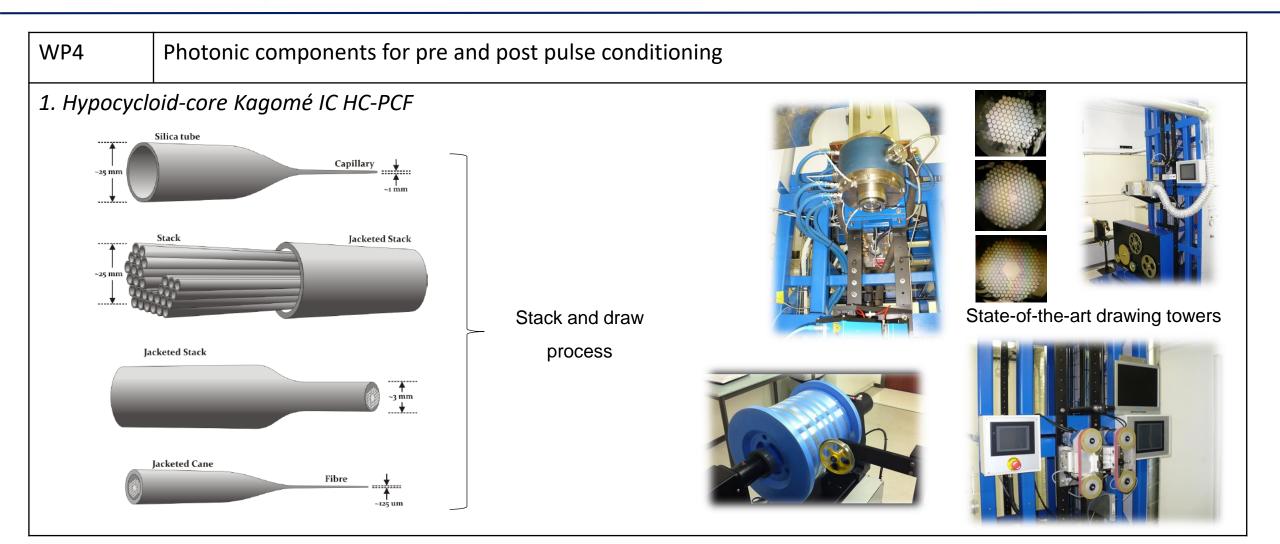
F. Gérôme, J. M. Blondy, and F. Benabid

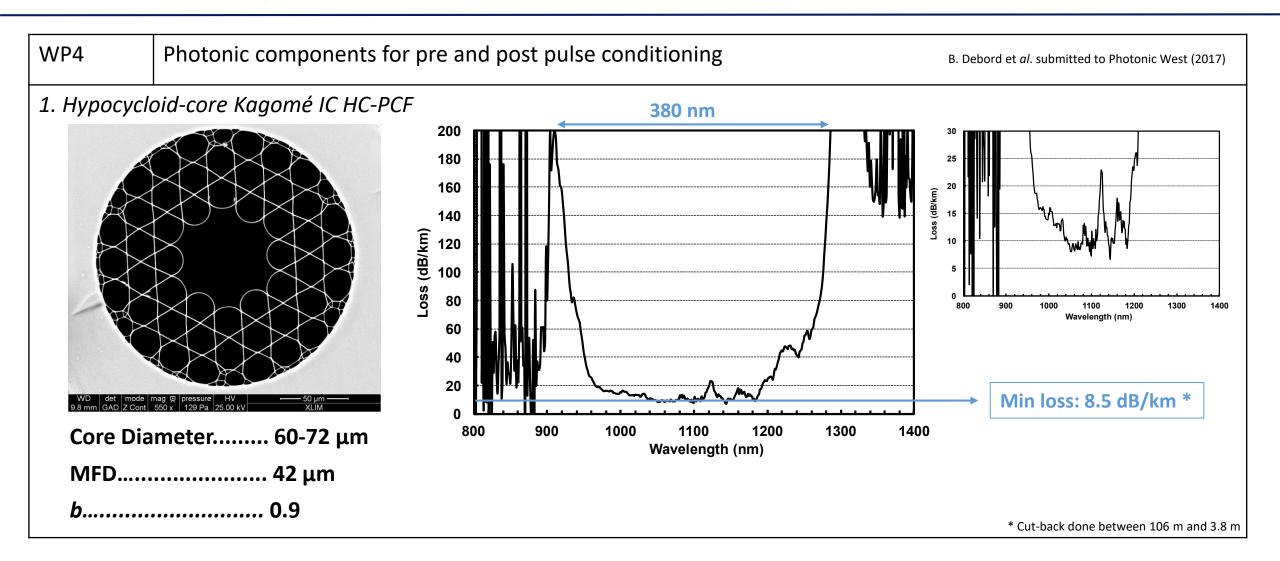
GPPMM group, Xlim Research Institute, CNRS UMR 7252, University of Limoges, Limoges, France

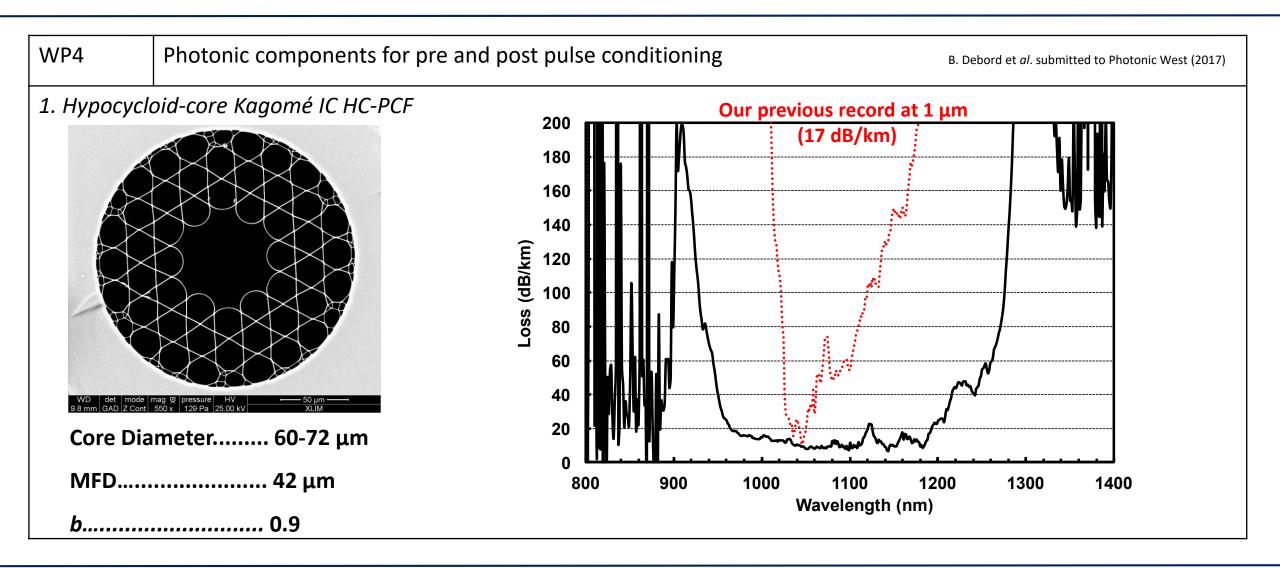


WP4	Photonic components for pre and post pulse conditioning
	D4.5 task / Objective : Conception and fabrication of HC-PCF with improved PER (> 20 dB) at 1 μm




WP4	Photonic components for pre and post pulse conditioning
Work cor	npleted
	Two designs investigated (simulations and fabrications):
1. Нуро	cycloid-core Kagomé IC HC-PCF
2. IC НС	-PCF with a single ring of tubular lattice cladding



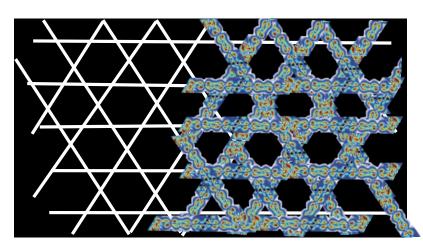




B. Debord et *al*. submitted to Photonic West (2017)

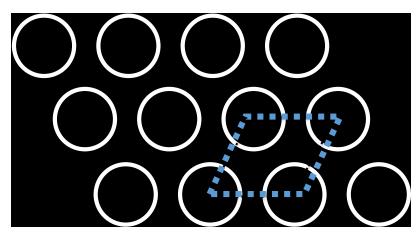
« Modal properties (S² and PER) under progress »

See Next 6 months plan

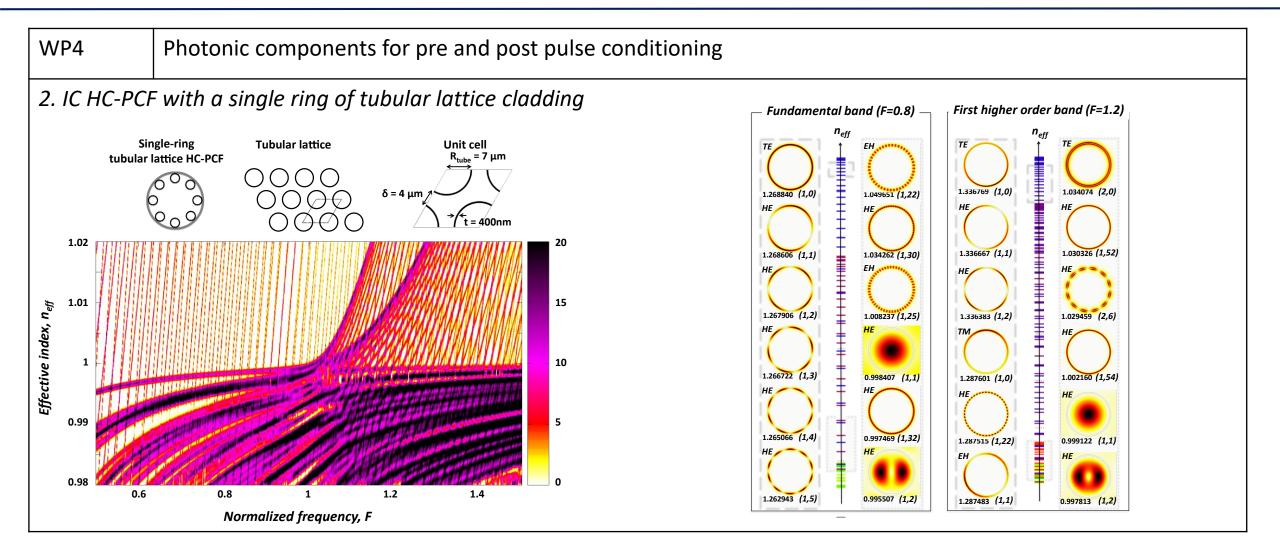


WP4

Photonic components for pre and post pulse conditioning

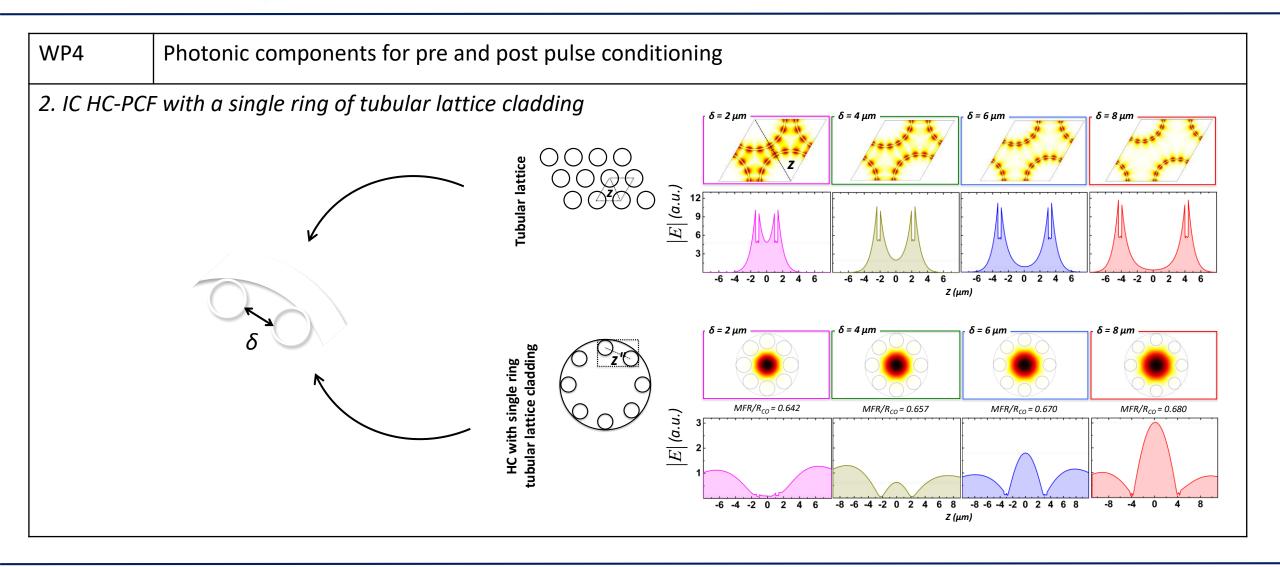

2. IC HC-PCF with a single ring of tubular lattice cladding

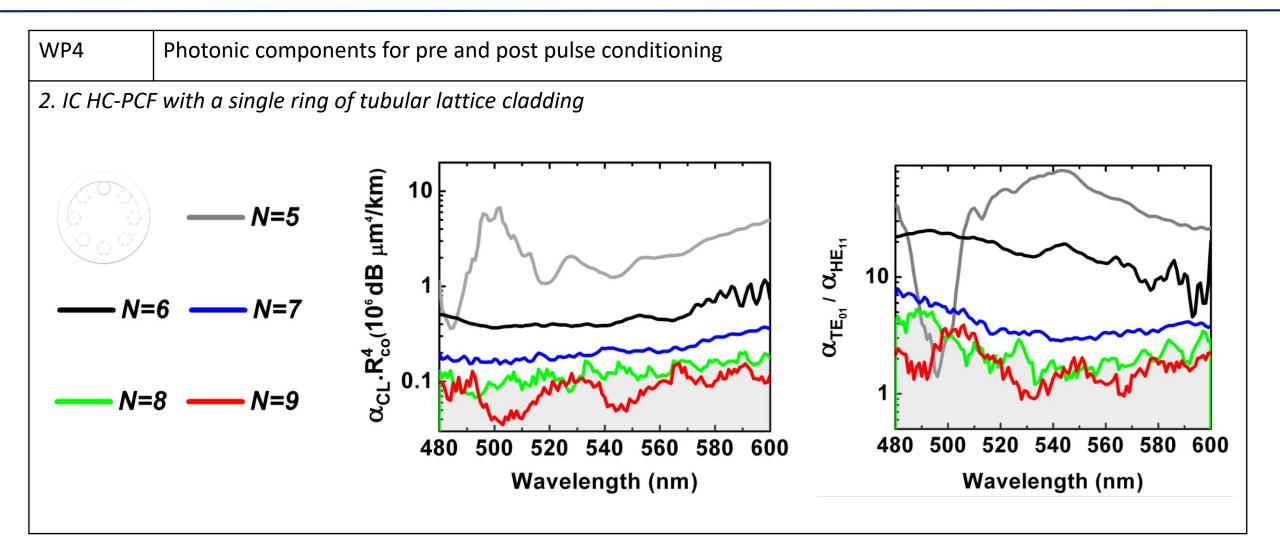
∖ <u>Kagome lattice</u>


✓ Long silica struts
 ✓ Typical azimuthal number *m* ≈ 200

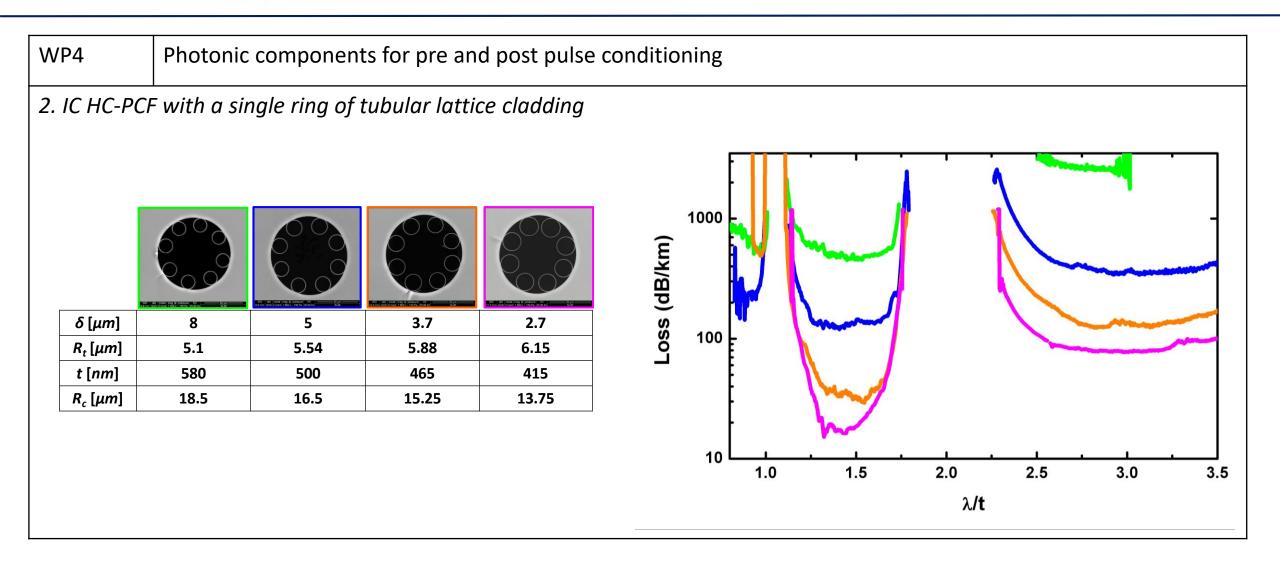
L<u>Tubular lattice</u>

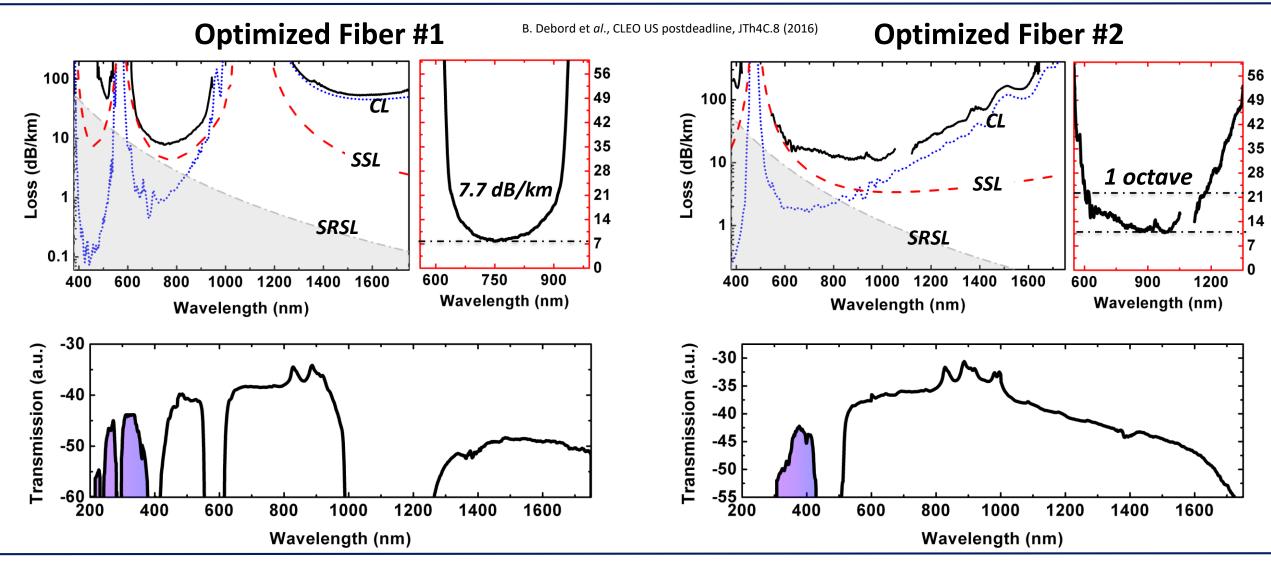
 \checkmark No connecting nodes

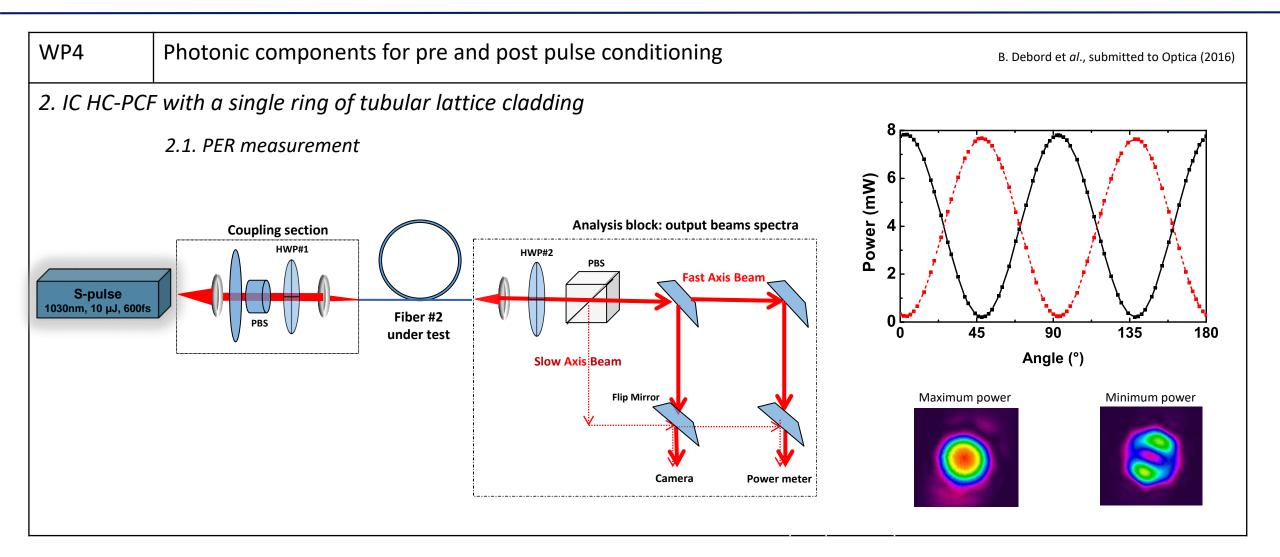


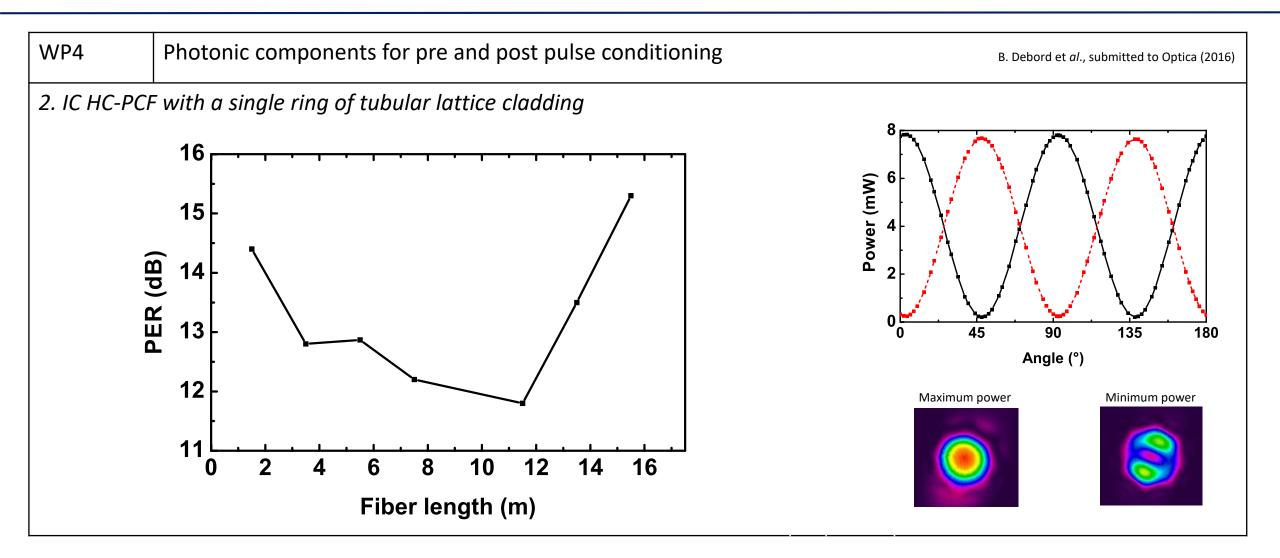

PERDIA

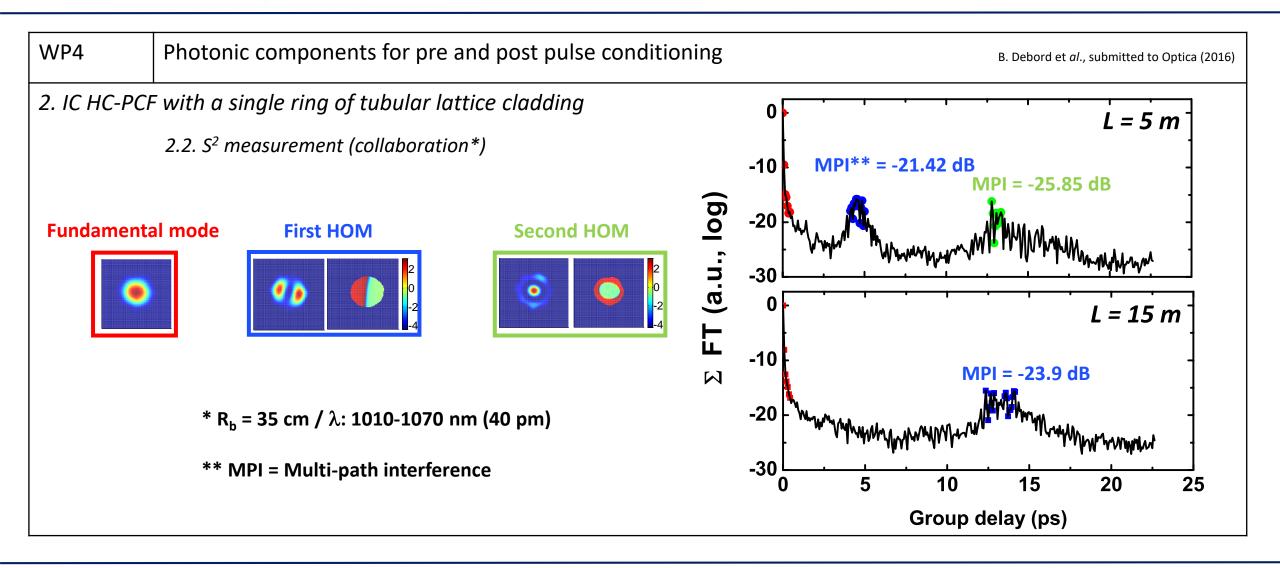
WP4	Phote	Photonic components for pre and post pulse conditioning									
2. IC HC-I	PCF with	a single ring of tubular lattic	ce cladding								
		Geometrical para	meters	Scaling laws	Limitations						
	Core	Core radius R _{co}		Large $Rco $ 7 IC (loss ~ R_{co}^4)	Ratio between <i>Rco</i> and <i>Rt</i> for single mode operation						
		Tube radius R _t	6	R _t ⊅ IC	 If too large: Coupling between core and tube mode Keeping the circular shape of the tube 						
	Cladding '	Strut thickness t	O.	Thin struts 7 IC	Induced surface roughness						
	Ċ	Gap between two tubes δ	Crs	 Large: avoid mode coupling between 2 adjacent tubes 	- If too large: Core mode not sufficiently confined						
		Number of tubes N									











PERDIA

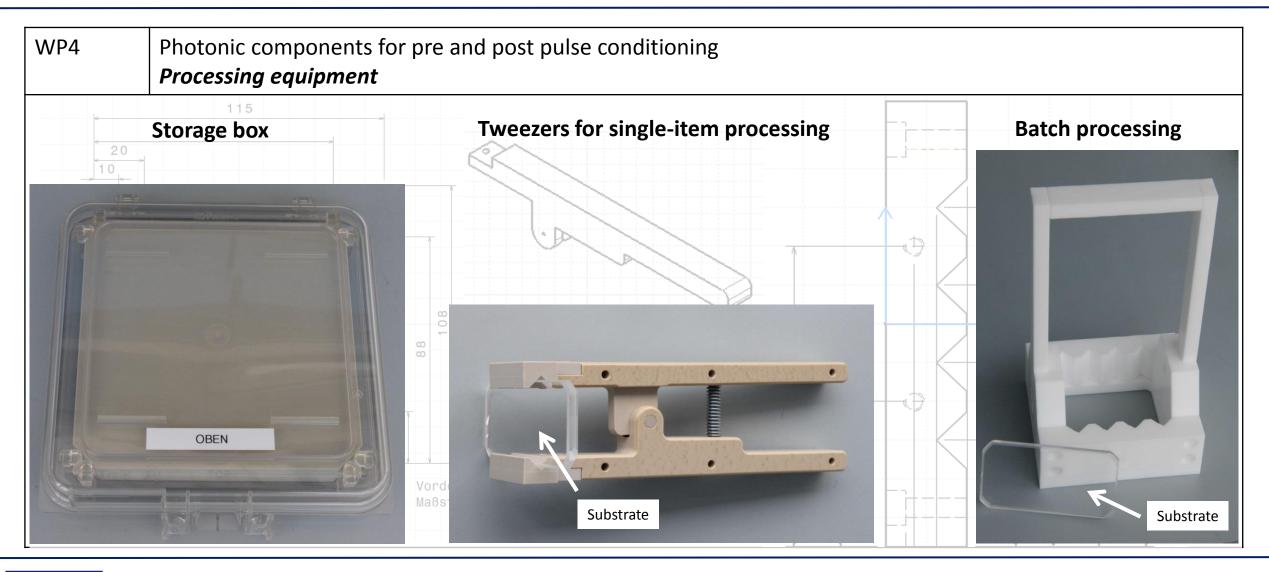
W	Photonic components for pre and post pulse conditioning
Ne	xt 6 months
1.	Investigation of the modal properties of the hypocycloid-core Kagomé IC HC-PCF
2.	Test of energy handling capabilities of the IC HC-PCF with a single ring of tubular lattice cladding
3.	Start to set a home-made S ² set-up
4.	Continue on the fabrication of IC HC-PCF

۷	VP8	Dissemination & Exploitation (partner activities)
F 1	•	Amsanpally A., Chafer M., Baz A., Maurel M., Blondy J-M., Hugonnot, E., Scol, F., Vincetti L., Gerome F., Benabid F.: « Ultra-low transmission loss n @750 nm) inhibited-coupling guiding hollow-core photonic crystal fibers with a single ring of tubular lattice cladding », Optica, submitted

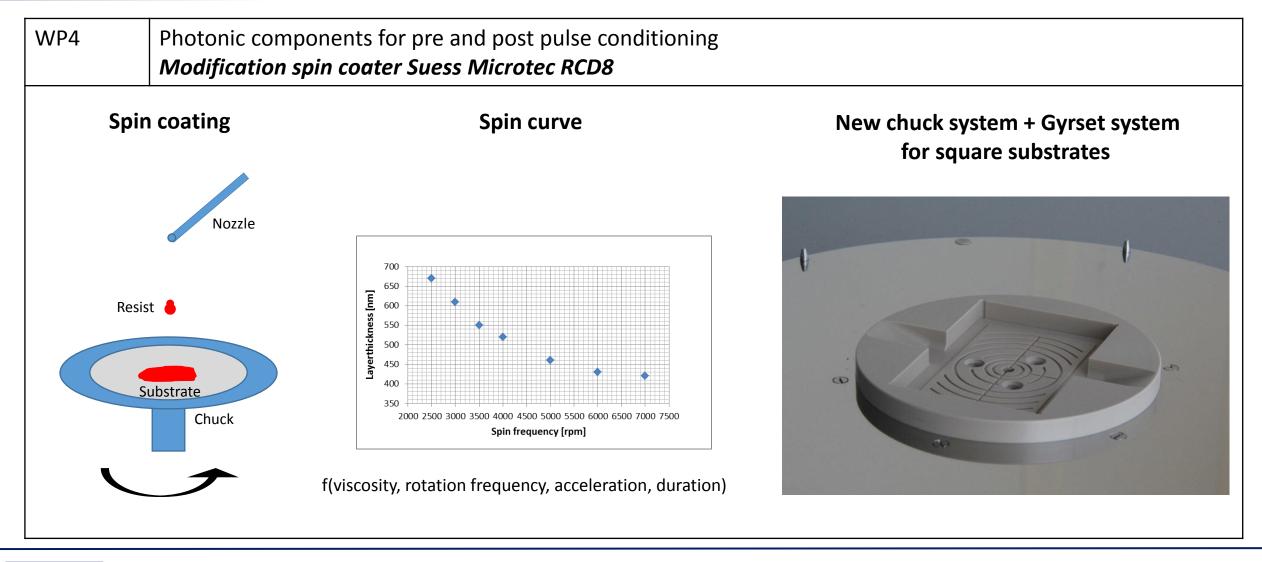
Peer review international conference:

- 1. DEBORD B., AMSANPALLY A., CHAFER M., BAZ A., VINCETTI L., BLONDY J-M., GEROME F., BENABID F.: « 7.7 dB/km losses in inhibited coupling hollow-core photonic crystal fibers », CLEO US, Postdeadline, JTh4C.8, San Jose, California, 5 10 June 2016.
- BENABID F.: « Hollow core photonic crystal fibre: Novel light guidance and myriad of gas-photonic applications», XXI Rinem, invited talk, Parma, Italy, 12 -14 September 2016.
- 3. DEBORD B., Maurel M., AMSANPALLY A., ADNAN M., BEAUDOU B., BLONDY J-M., VINCETTI L., GEROME F., BENABID F.: « Ultra-low loss (8.5 dB/km @ Yb-laser region) inhibited-coupling Kagome HC-PCF for laser beam delivery applications », Photonic West 2017, submitted.
- 4. Maurel M., GORSE A., BEAUDOU B., LEKIEFS Q., DEBORD B., GEROME F., BENABID F.: « Kagome fiber based industrial laser beam delivery», Photonic West 2017, submitted.

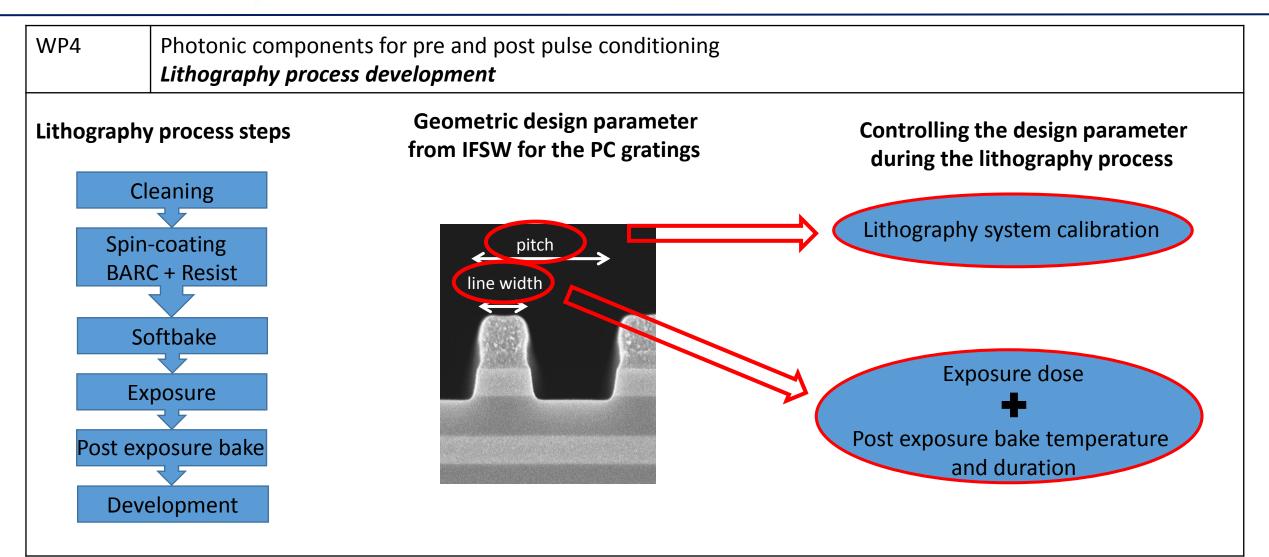
Our role:

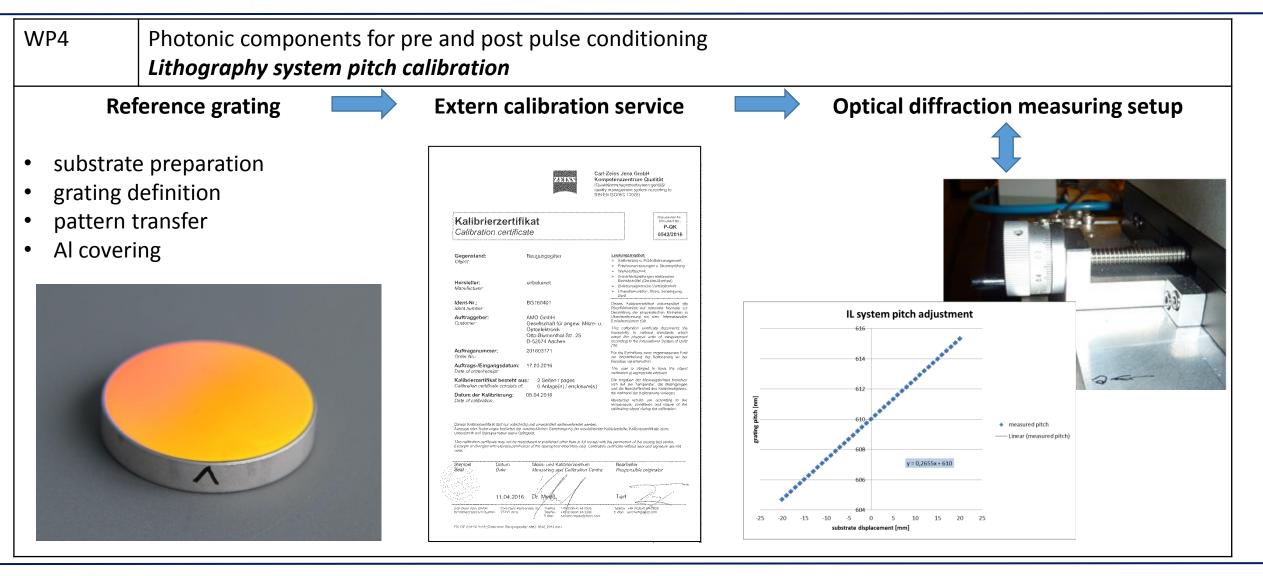

- AMO mainly active in WP4 (T4.2 and T4.3)
- Process development PC-grating fabrication

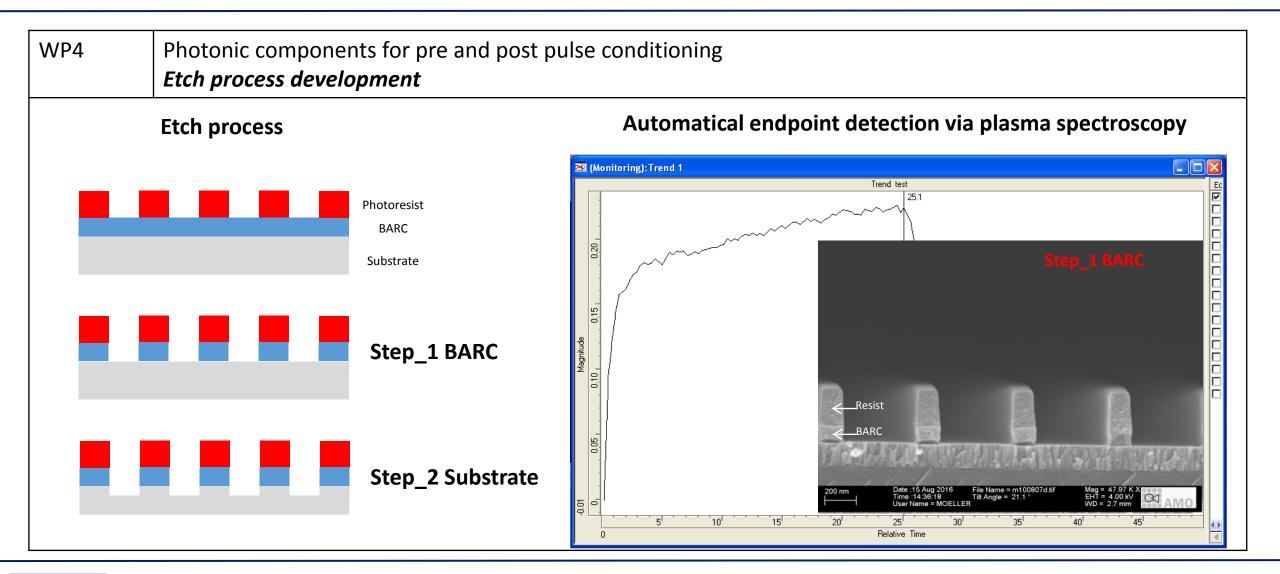
Gantt chart:

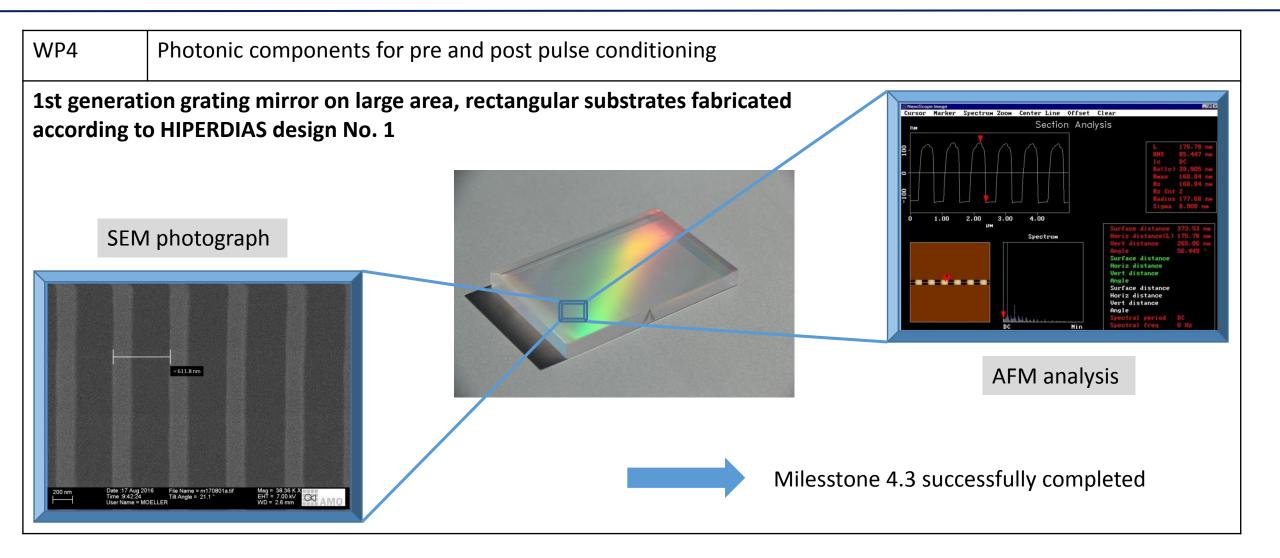

	ltem	M1	M2	M3	M	M5	M6	Μ7	MM MG		M10 M11	M12	M13	M14	M15	M16	M17 M18
	WP1 - Definition of User Requirements								M1.1	М	1.2	M1.3					
T1.1	Collection of end-user application specifications				D1.1							M1.4	_				
T1.2	Process and system specifications											D1.2					
T1.3	Assessment and validation of technical progress											D1.3					
T1.4	Interface requirements											D1.4					
	WP2 - Process Development																
T2.1	Fundamental process development 3D Si processing																
T2.2	Fundamental process development fine cutting of metals											1					
T2.3	Fundamental process development diamond ablation											T					
T2.4	Upscaling of applications for high throughput																
	WP3 - Ultrafast laser front-end development								M3.	.1							
T3.1	50-W, 300-fs laser >1MHz at 1030nm								D3.	1							
T3.2	200-W, ~500-fs laser >1MHz at 1030nm												L				
T3.3	Flexible user interface including high speed modulation a high power pulse train																
	WP4 - Photonic components for pre-and-post-pulse conditioning			M4.1			M4.2		M4.3			M 4.4 M 4.5				M4.4 M4.8	
T4.1	Design of grating compressors											M4.6	ļ			M4.9	
T4.2	Development of a lithography process for the fabrication of pulse compression gr	ating	s		<u>;</u>			(M			ļ	<u> </u>				
T4.3	Development of an etching process for the fabrication of optical components								0								
T4.4	Fabrication and characterization of photonic microcell (PMC) module				D4.1							D4.2					D4.3
T4.5	Design/Fabrication of photonic microcell module with integrated coupling optics																
T4.6	Design and Fabrication of polarization maintaining hollow-core photonic crystal																
	WP5 - Thin-disk Multi-pass Booster																
T5.1	Design of the thin-disk multipass amplifier						D5.1										
T5.2	Assembly & characterization of Yb:YAG thin-disk multipass amplifier																
T5.3	Second and third harmonics generations						**********					-	8		x 1	3	
TE 4																	

T5.4 Integration of the Yb:YAG thin-disk multipass amplifier





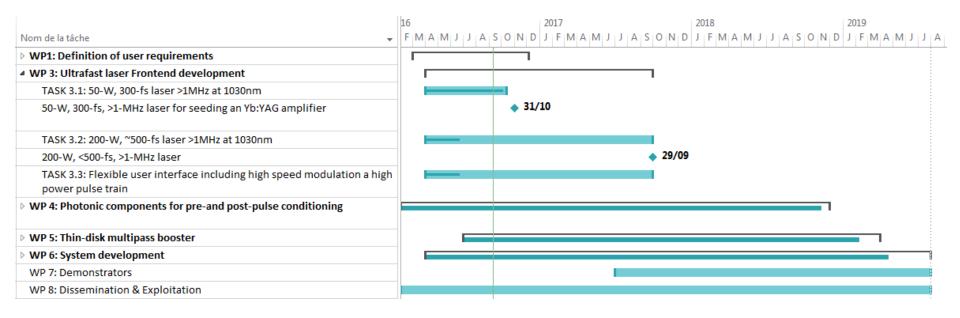






WP4	Photonic components for pre and post pulse conditioning	
Summary		
 New cu Fabrica Pitch a Autom 	sing equipment developed and tested successfully ustomized mechanical chuck and software for the spin coater RCD8 was installed ation of a reference grating is completed djustment from lithography system verified atic endpoint detection tested in combination with etch process Step_1 BARC one 4.3 fulfilled	

WP4	Photonic components for pre and post pulse conditioning				
Next 6 months					
Spin coatii	ng:				
• Integra	ition and start-up of the Gyrset system for the coating of square substrates				
Process	s development and optimization with focus on uniformity and reproducibility				
Lithograp	hy process:				
	ce of exposure dose and PEB on linewidth of the grating				
	ies to improve linewidth reproducibility				
Etch proce	ess:				
	nt detection system compatibility to etch process Step 2 Substrate				
,					


Amplitude Systèmes B. Weichelt, M. Delaigue, J. Pouysegur, F. Morin, C. Hönninger

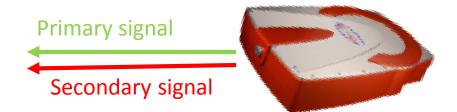
• WPs with contributions from Amplitude

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

CONFIDENTIAL

WP 1: Definition of user requirements

- Participation in the definition of process and system specifications
 - Discussions with and input from Bosch and C4L
 - This input is taken into account in Amplitude's user interface development (task 3.3) and as far as possible anticipated in the deliverables D3.1 (50-W femtosecond laser) and D3.2 (200-W femtosecond laser)
 - <1ps pulse duration</p>
 - Max. pulse energy ~500µJ
 - Typical pulse repetition rate ranges (< 2 MHz)
 - Flexible burst mode
 - Synchronisation to scanner
 - Real pulse on demand & triggering by scanner control or...
 - ...fast changing of pulse divider or...
 - …other approaches

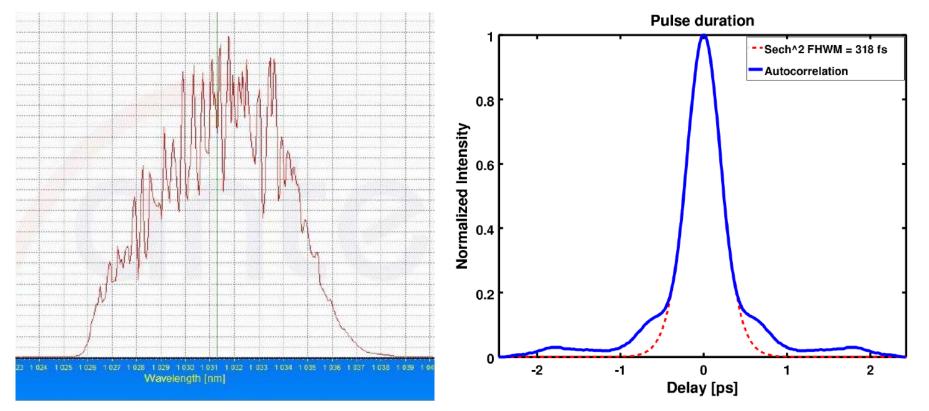


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

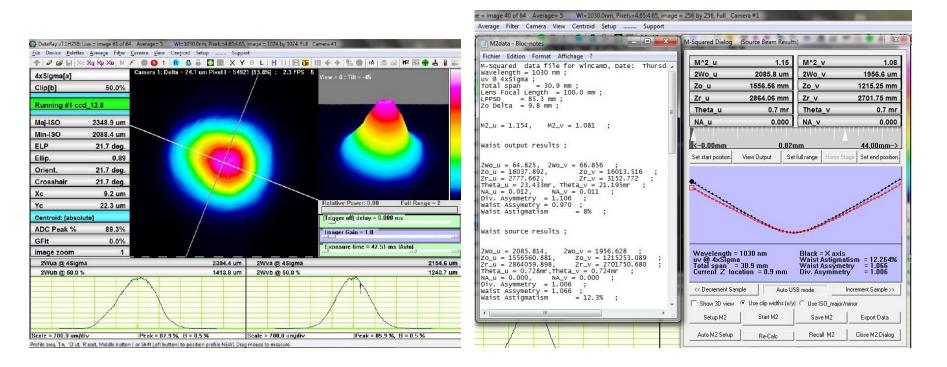
CONFIDENTIAL

- T3.1: 50-W femtosecond laser
 - Task ~95% finished
 - 50-W laser should be shipped to IFSW this week

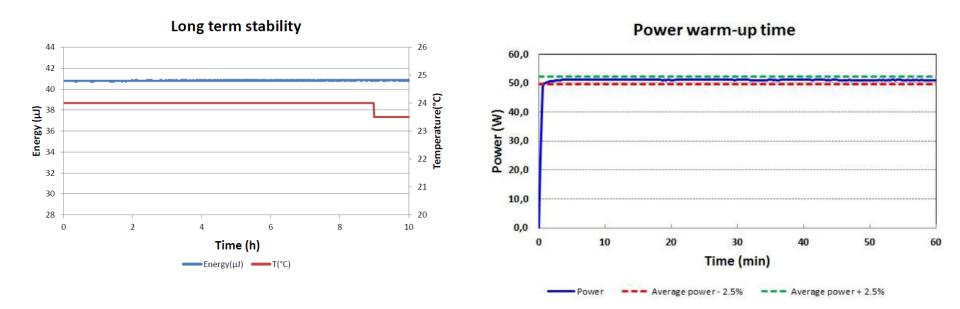
- Further specific laser features:
 - Zero diffraction order output to ensure saturation of downstream thin disk amplifier and avoid first pulse problematic or damage
 - Synchronisation to scanner (supersync), synchronisation scheme follows below
 - Burst mode possible


• T3.1: 50-W femtosecond laser

	Laser Parameters	•	Unit	Та	rget	Measu	rement
	Laser Farameters		Onit	1250 kHz	2 MHz	1250 kHz	2 MHz
	*Energy per pulse		μJ	≥ 40	≥ 25	40.8	25.8
	*Average power		W	≥ 50	≥ 50	51.02	51.6
	Center wavelengt	n	nm	1030) +/- 5	1031.3	1031.3
	Bandwidth FWHM			1	10	6.8	6.7
	*Pulse duration		fs	<	400	320	310
	Pulse energy over 12h	Average	μJ	≥ 40	N/A	40.8	N/A
≌	Fulse energy over 1211	RMS	%	< 2		0.10	
=	Polarization ratio		-	> 100:1		2516:1	
	M²	M²x		1 20	1.15		
	IVI=	M²y	-	< 1.30		1.08	
	Beam diameter	Wox	mm	2.5 +/- 0.5		2.35	
	Dean diameter	Woy	mm 2.5 +/-		- 0.5	2.09	
	Beam ellipticity Astigmatism Waist ellipticity			< 13%		11.1	
			%	< ;	< 50%		3
				< '	13%	3.	.0
	Pointing stability		µrad	<	100	x: 37	y: 48

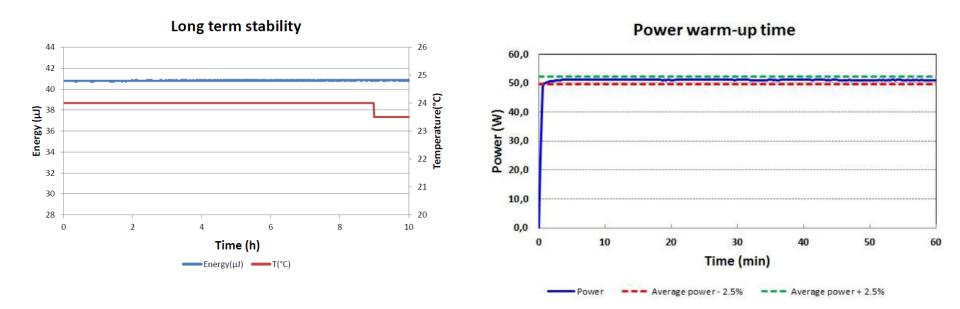

• T3.1: 50-W femtosecond laser

• T3.1: 50-W femtosecond laser

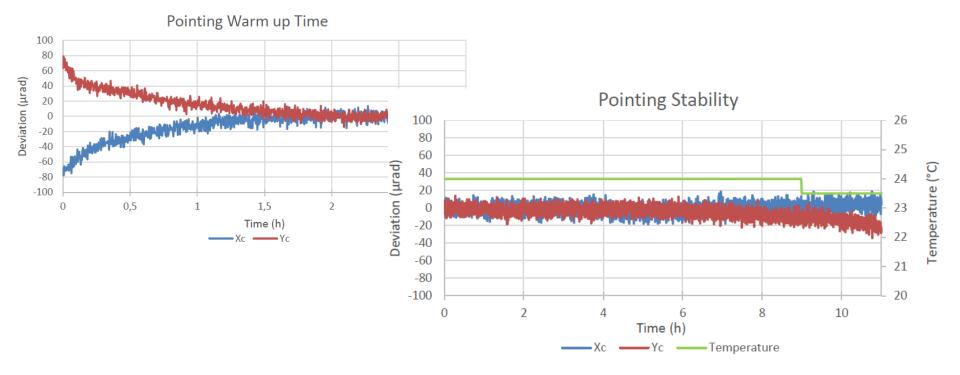

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

CONFIDENTIAL

• T3.1: 50-W femtosecond laser

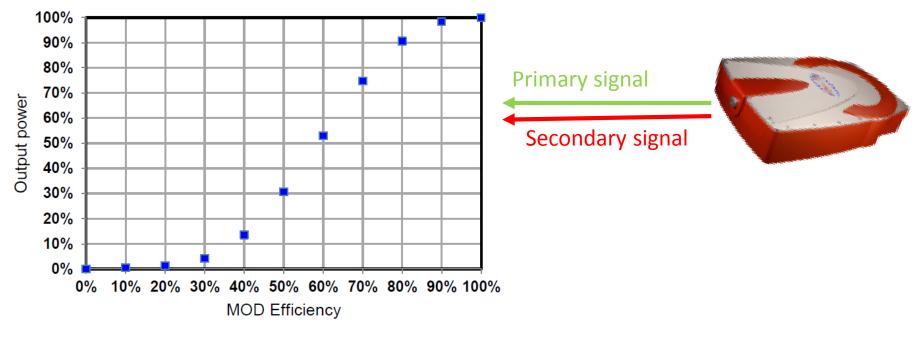

CONFIDENTIAL

• T3.1: 50-W femtosecond laser



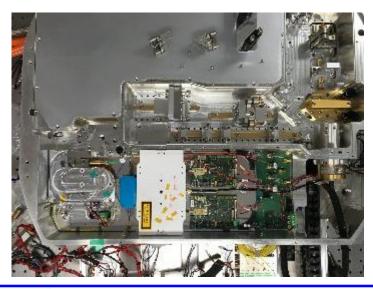
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

CONFIDENTIAL


• T3.1: 50-W femtosecond laser

• T3.1: 50-W femtosecond laser

External modulator attenuation:

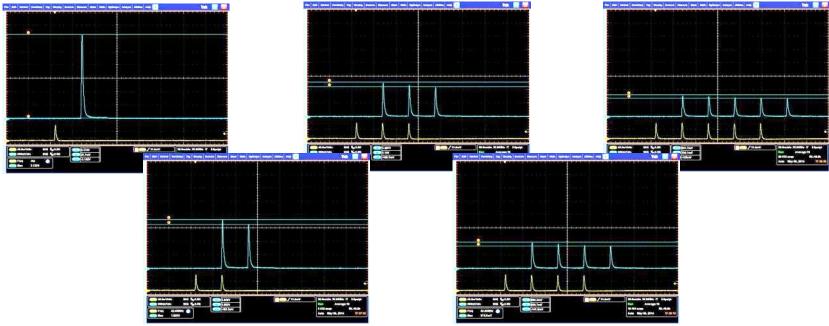


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

CONFIDENTIAL

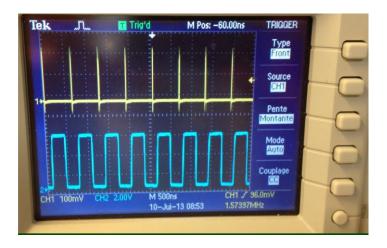
- T3.2: 200-W femtosecond laser
 - Task started (~10 to 15% estimated)
 - Buying of components and testing of concepts
 - Preliminary results, but too early to conclude for best concept

- not fully characterized
- not compressed

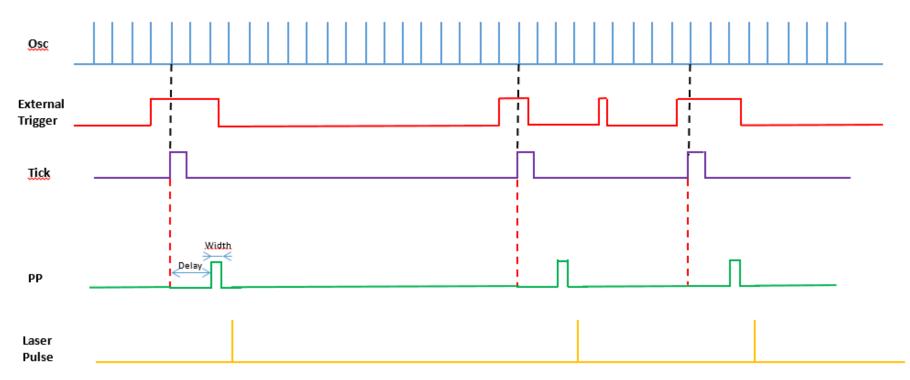


- T3.3: Flexible user interface including high speed modulation a high power pulse train
 - Task started (~10% estimated)
 - Typical pulse repetition rate ranges (< 2 MHz)
 - Flexible burst mode
 - Synchronisation to scanner
 - Real pulse on demand & triggering by scanner control or...
 - ...fast changing of pulse divider or...
 - ...other approaches

 T3.3: Flexible user interface including high speed modulation a high power pulse train



- Pulse separation within burst = oscillator periode: 25 ns
- Burst repetition rate flexible


- T3.3: Flexible user interface including high speed modulation a high power pulse train
 - User access to Pulse picker
 - Synchronisation between Laser and Scanner for high speed processing

 T3.3: Flexible user interface including high speed modulation a high power pulse train

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

CONFIDENTIAL

- T3.3: Flexible user interface including high speed modulation a high power pulse train
 - Identify all critical system delay times
 - Suggest concepts for pulse-on-demand without "dead times" to endusers, discuss, decide, realize

- WP 4, 5, 6:
 - WP 4: Photonic components
 - Specifications for high efficiency diffractions gratins communicated to partners IFSW and AMO
 - WP 5: Thin disk multipass booster
 - first seed laser to be provided soon
 - Additional features integrated to facilitate thin disk multipass amplifier (zero order of ext. Mod OUT)
 - Discussions on control interface started but needs to become more concrete
 - WP 6: System development
 - Interfaces of seed lasers communicated to integrator LASEA (as far as possible at this stage)

- Next steps:
 - WP 3:
 - Ship and install 50-W laser (this month)
 - R&D work on 200-W laser, validate concept, and start demonstrator fabrication (should be in plan)
 - R&D work on user interface and pulse-on-demand requirements
 - Close contact to end users required in order to develop the right thing

High-Volume 3D Processing of Silicon – Process Development

M. Lustfeld, A. Michalowski, M. Ametowobla, G. Kunz, D. Brinkmeier, S. Karg

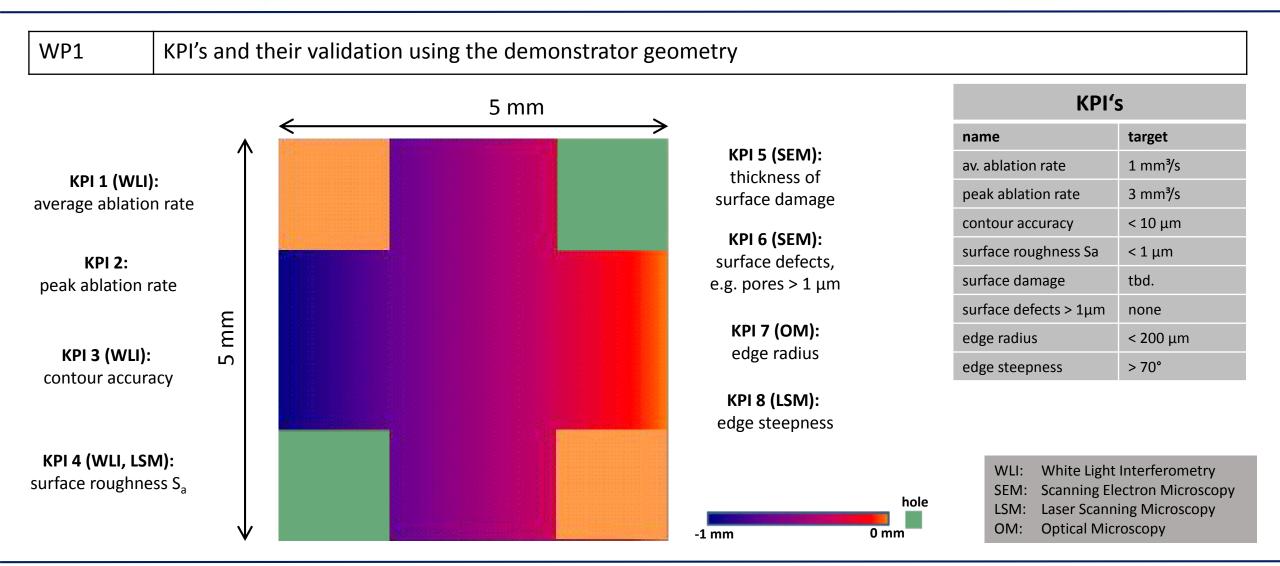
BOSCH team involved in HIPERDIAS

HIPERDIAC

- Martin Lustfeld / <u>martin.lustfeld@de.bosch.com</u> / +49 (0) 711 811 43990
- Andreas Michalowski / andreas.michalowski@de.bosch.com / +49 (0) 711 811 43423
- Mawuli Ametowobla / <u>mawuli.ametowobla@de.bosch.com</u> / +49 (0) 711 811 34422
- Stephanie Karg / <u>stephanie.karg2@de.bosch.com</u> / +49 (0) 711 811 21166
- Gerhard Kunz / gerhard.kunz@de.bosch.com / +49 (0) 711 811 24266
- David Brinkmeier / <u>fixed-term.david.brinkmeier@bcn.bosch.com</u> / Master's student

Timeline of BOSCH involvement in HIPERDIAS

Task	H1/16	H2/16	H1/17	H2/17	H1/18	H2/18	H1/19
1.1 Application specs		D1.1: End-use R: BOSCH; tur	r application specs ned in: 06/16				
1.2 Process & system specs			D1.2: Process 8	system specs			
1.3 Validation of progress			D1.3: Prototype validation R: BC				
2.1 Process development					D2.1: Process lin 3D Si processing		
2.4 Process upscaling					♦	D2.4: Strategy for processing; R: B	
6.1 Definition of interfaces			D6.1: Interface	definition			
6.6 Test and Evaluation						D6.6: System t	est & validation
7.4.1 Reference samples					D7.5: Performance demonstrator; R: B		



Consortium Meeting - Stuttgart - 13/09/2016

WP1	Definition of user requirements	
Work compl	leted in period 02/16 – 08/16	
Task 1.1: Co	llection of end-user application specifications	
• Specified	demonstrator geometry containing all end-user requirements	
• Complete	ed Deliverable 1.1	
Task 1.2: Pro	ocess and system specifications	
Deduced	system requirements from product requirements	
• Defined a	additional system requirements based on experience in Task 2.1	
Discussed	d requirements with partners in WP3-7	
Task 1.3: As	sessment of technical progress	
Deduced	KPI's from demonstrator geometry	
• Identified	d assessment methods to validate KPI's	
Work in pro	gress until 01/17	
• Establish	iterative feedback loop with partners in WP3-7 to adapt system requirements	
• Adapt de	emonstrator geometry accordingly	
Qualify a	ssessment methods for validation of KPI's	

WP1

Implications of process requirements for the laser production system

Performance and quality: Laser source and interface features

- Pulse duration $\tau_p < 1$ ps (increased ablation efficiency for reduced pulse duration)
- Max. pulse energy $E_p \ge 500 \ \mu J$
- Pulse repetition frequency $f_{rep} \leq 2$ MHz (estimate)
- Min. 2 pulse burst desirable, flexible burst desirable
- Pulse divider from base frequency (variable repetition rate, unchanged pulse parameters)
- Synchronization with scanner (\rightarrow use of skywriting) \rightarrow e.g. precision switching of gate
- Ideal: synchronization of scanner speed and pulse repetition frequency → increase processing speeds

Safety

- High total ablated volume \rightarrow heavy-duty exhaust system
- Very high power densities \rightarrow x-ray shielding?
- High power input: wafer cooling to avoid cracking?

WP2	Process Development
Work comp	leted in period 02/16 – 08/16
Task 2.1: Fu	Indamental process development 3D Si processing
• Perform	ed literature study on:
• Sta	te of the art in laser processing of Si
Cor	nparison to alternative Si micro structuring processes (mechanical, chemical)
• Ablated	3D Si demonstrator geometry
• Qua	alified assessment methods of KPI's
• Det	ermined current state of KPI's
• Determi	ned ablation efficiency as a function of fluence at medium laser power
• 3 d	ifferent laser sources (40 W – 50 W)
• Pul	se duration (1 ps, 6 ps, 10 ps)
• Las	er fluence: 0.1 J/cm ² – 3 J/cm ²
• Perform	ed ablation experiments at high power (670 W) @ USTUTT

WP2

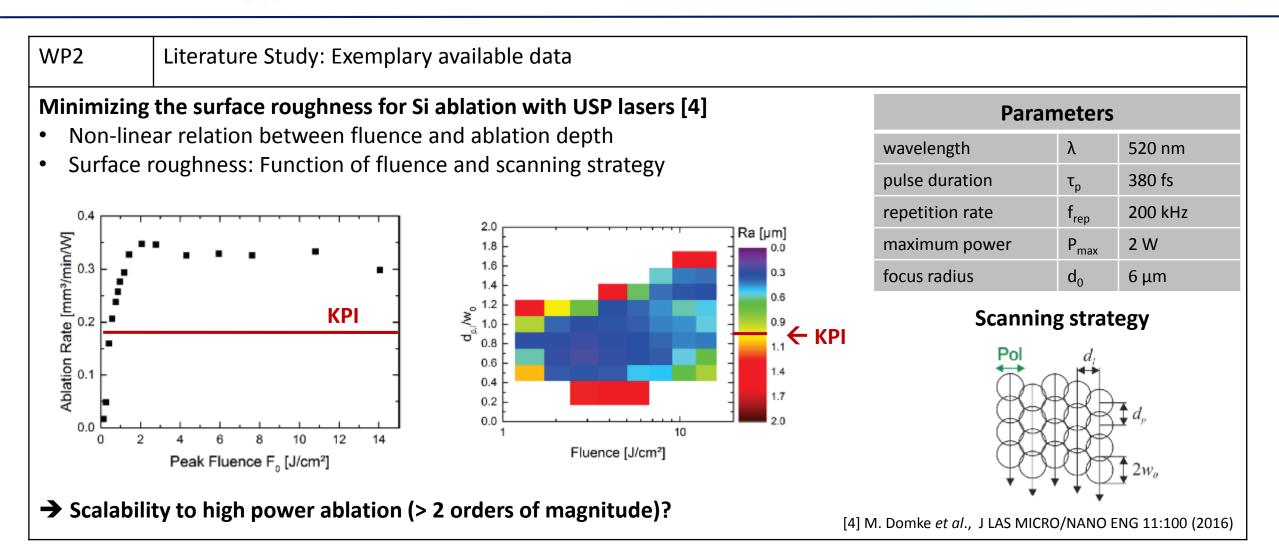
Process Development

Work in progress Short-term: until 03/17

- Continue literature study
- Continue studies on process fundamentals
 - Impact of processing in burst mode
 - Impact of very short pulse duration (< 1 ps)
 - Phenomena occurring during processing at very high fluence
- Proposal of set of optimum laser process parameters

Long-term (including WP 6.6 and WP 7.4.1)

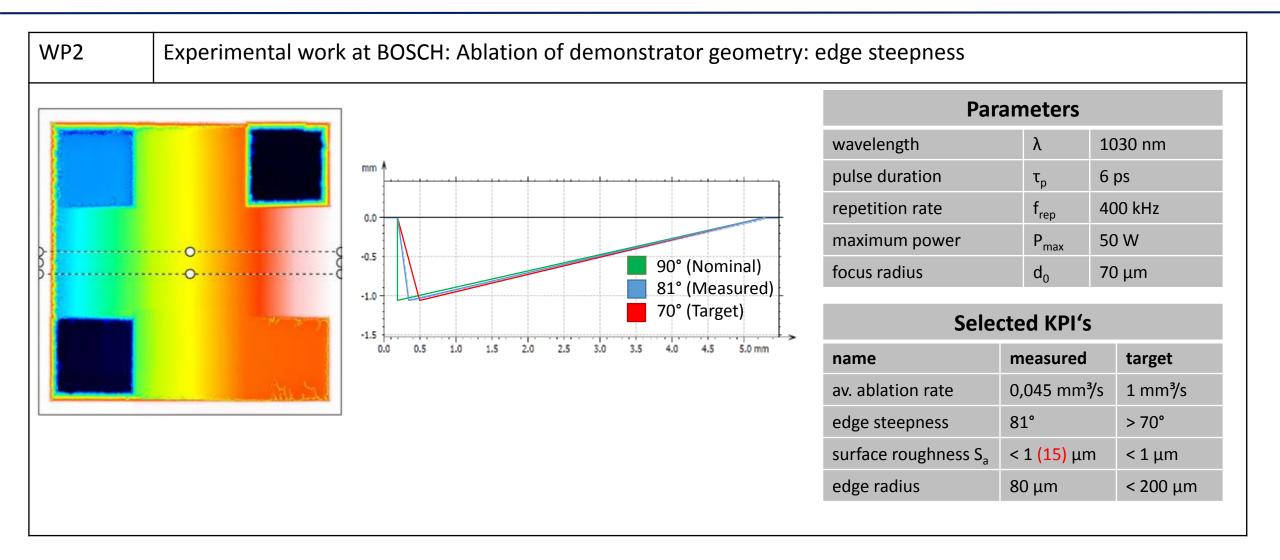
- Design of experimental strategy for upscaling of the laser process
- Implementation of experimental strategy in collaboration with WP3-7
- Identification of phenomena occurring specifically at very high laser power
- Optimization of overall process



WP2	Literature Study
Alternative	Si removal processes:
Mechan	ical milling: High finishing quality requires ductile processing regime at very low feed rate
\rightarrow curre	ntly available technology too slow by several orders of magnitude [1] [2]
Chemica	I etching: Challenge: Si texture causes anisotropic removal rates;
3D ablat	ion requires elaborate masking setup $ ightarrow$ very slow processing
Laser proce	ssing of Si: Exemplary studies, recently published:
• [3]: ps-la	ser texturization of Si for photovoltaics at UV, VIS, IR wavelength
\rightarrow Sub	-surface damage of Si (amorphization) to a depth of up to 2 μ m below the ablated surface
• [4]: Mini	mizing the surface roughness for Si ablation with USP lasers
\rightarrow Tra	de-off between laser-induced surface structures (low fluence) and melt ejections (high fluence)
\rightarrow Sur	face roughness depends strongly on scanning strategy
• [5]: Qua	lity & efficiency enhancement by processing in burst mode ("ablation-cooled material removal")
	usnaldy, H.S. Kim, INT J MACH TOOL MANU 47:52 (2007); [2] M. Arif, M. Rahman, W.Y. San, J MANUF PROCESS 14:52 (2012) ti <i>et al.</i> , APPL SURF SCI 371:196 (2016); [4] M. Domke <i>et al.</i> , J LAS MICRO/NANO ENG 11:100 (2016); [5] C. Kerse <i>et al.</i> , NATURE 537:84 (2016)

	State and a state of the state	Par	ameters	
		wavelength	λ 1	030 nm
		pulse duration	τ _p 6	ps
		repetition rate	f _{rep} 4	00 kHz
	Finandel William	maximum power	P _{max} 5	0 W
		focus radius	d ₀ 7	0 µm
		Selec	cted KPI's	
		name	measured	target
	the second secon	av. ablation rate	0,045 mm³∕s	1 mm³∕s
		edge steepness	81°	> 70°
		surface roughness S _a	< 1 <mark>(15)</mark> μm	< 1 µm
	Bu. C. B.	edge radius	80 µm	< 200 μm

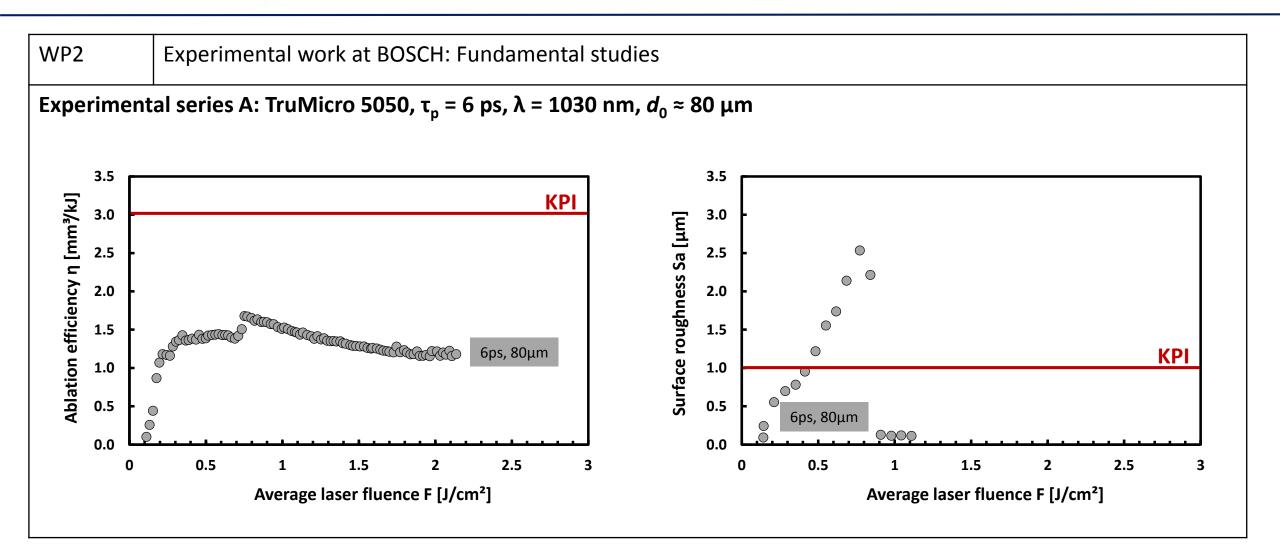
WP2	Experimental woi	rk at BOSCH: Abl	lation of demonstrator geo	metry (laser source: Trulvi	icro)	
	6		many and a second second	Par	ameters	
				wavelength	λ	1030 nm
				pulse duration	τ _p	6 ps
	1			repetition rate	f _{rep}	400 kHz
	1 dansa	under the	ST.	maximum power	P _{max}	50 W
				focus radius	d ₀	70 µm
				Sele	cted KPI's	
	3			name	measured	target
	1		and the second second	av. ablation rate	0,045 mm³/s	s 1 mm³∕s
	10			edge steepness	81°	> 70°
1=80		1		surface roughness S _a	< 1 <mark>(15)</mark> μm	< 1 µm
Contraction of the second		1	Au - 1	edge radius	80 µm	< 200 µm

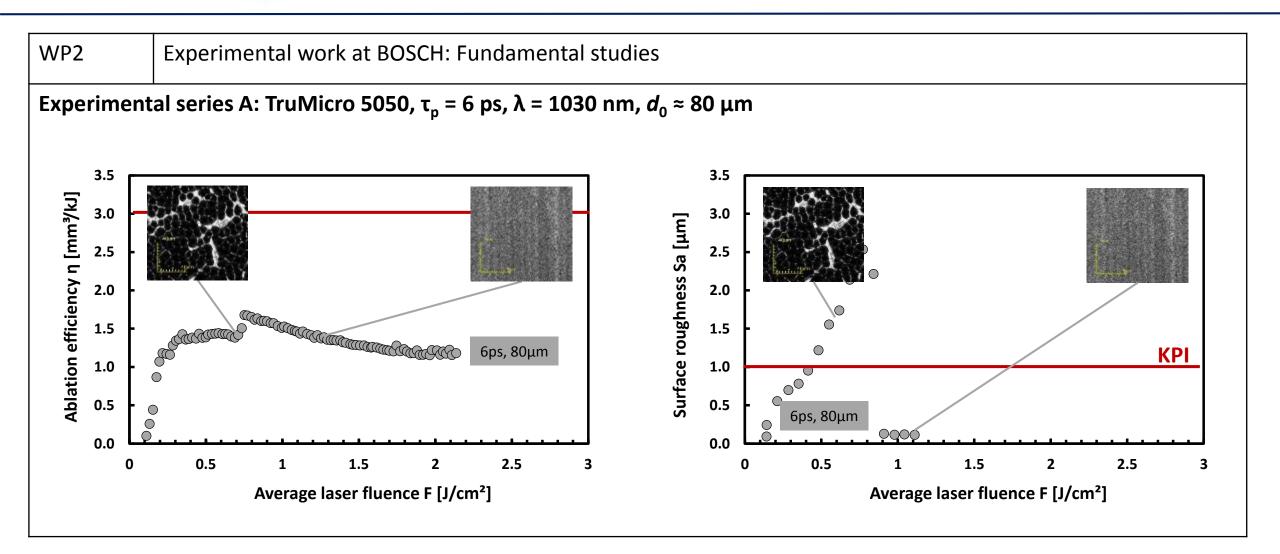


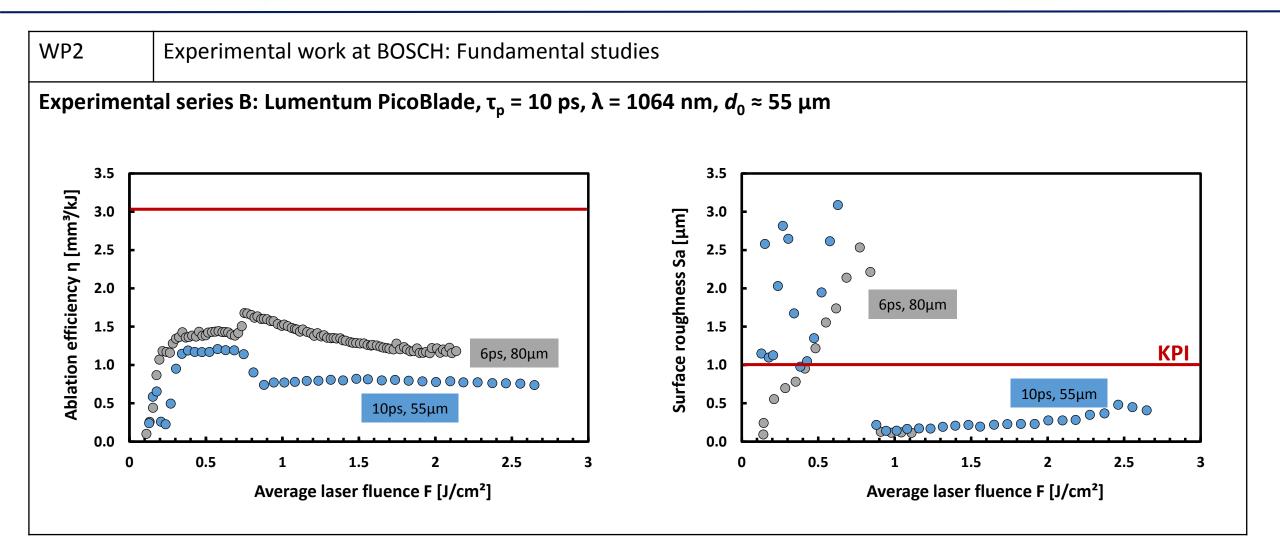
WP2 Experimental work at BOSCH: Ablation of demonstrator geometry: surface roughness $S_7 = 3,3 \ \mu m \mid S_a = 0,451 \ \mu m$ $S_z = 2,6 \ \mu m \mid S_a = 0,325 \ \mu m$ $S_z = 110 \ \mu m \mid S_a = 13,3 \ \mu m$

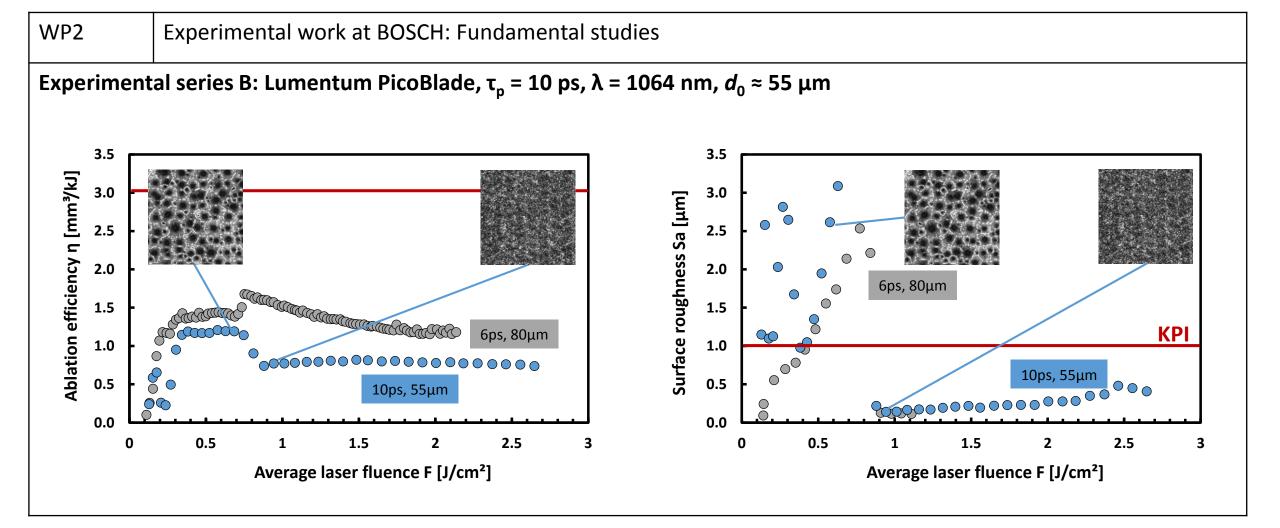
Parameters					
wavelength	λ	1030 nm			
pulse duration	τ _p	6 ps			
repetition rate	f _{rep}	400 kHz			
maximum power	P _{max}	50 W			
focus radius	d ₀	70 µm			

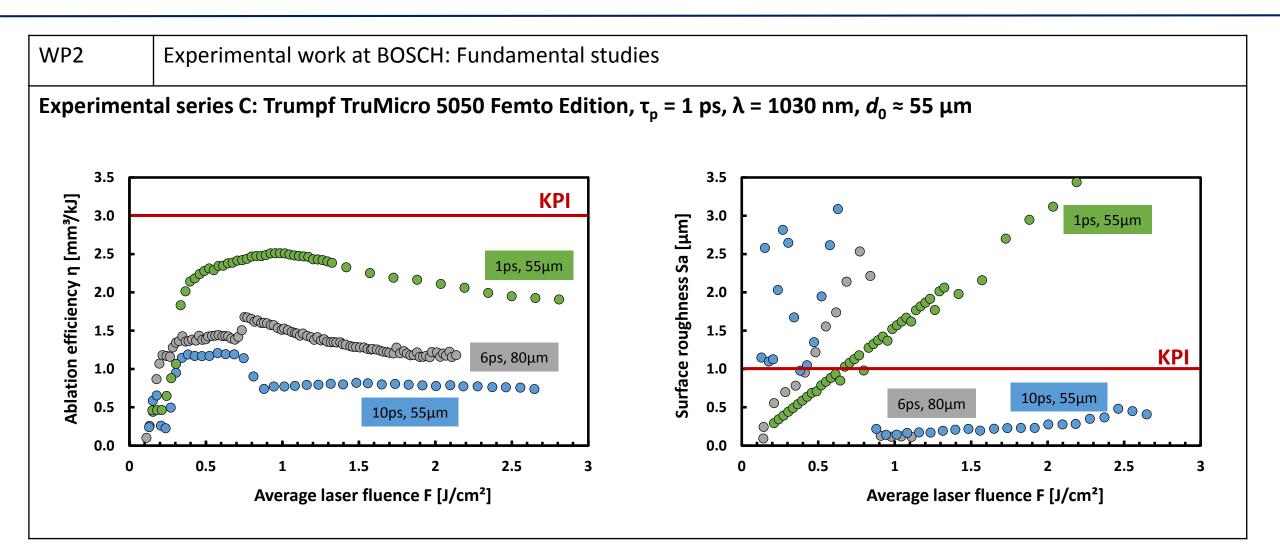
Selected KPI's					
Name	measured	target			
av. ablation rate	0,045 mm³∕s	1 mm³∕s			
edge steepness	81°	> 70°			
surface roughness S _a	< 1 <mark>(15)</mark> μm	< 1 µm			
edge radius	80 µm	< 200 µm			

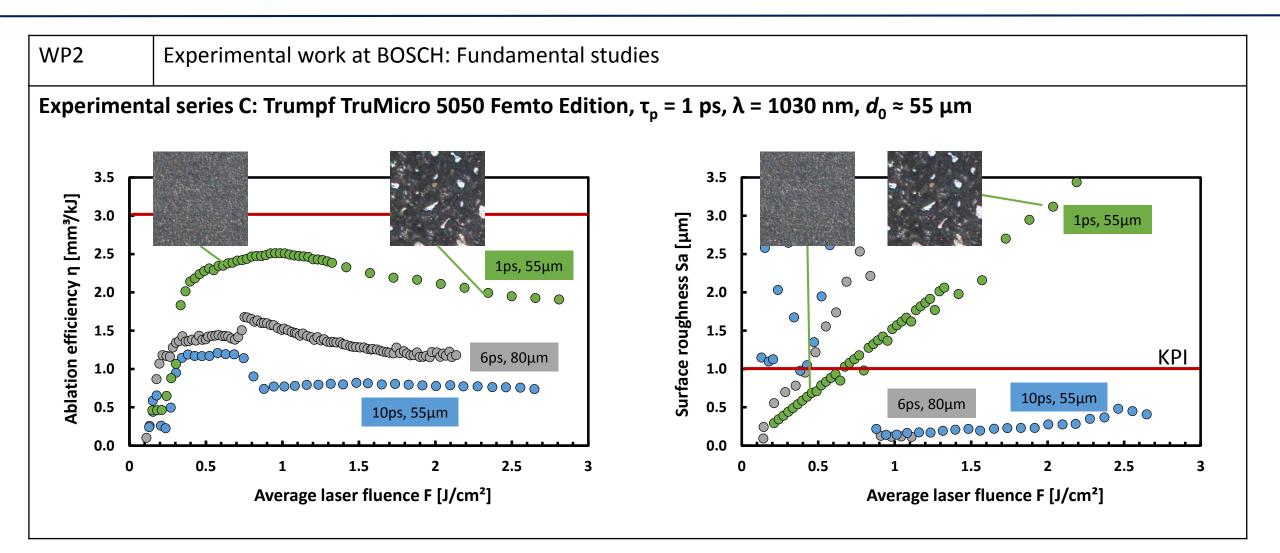



WP2 Experimental work at BOSCH: Fundamental studies					
 Objectives of fundamental studies: Suitability of laser sources (3 USP lasers): Determined relation: laser fluence – ablation efficiency Determined relation: ablation rate – surface quality Determined scalability of literature values to medium laser power 		Used Laser Sources			
		A: TruMicro	B: Picoblade	C: TruMicro FE	
		1030 nm	1064 nm	1030 nm	
		6 ps	10 ps	1 ps	
		400 kHz	1000 kHz	400 kHz	
		50 W	40 W	40 W	
		80 µm	55 µm	55 μm	
Procedure:		no	yes	no	
 Efficiency curve: Ablated square geometry (1 mm²): 20 – 50 samples (0.1 – 3 J/c Measured ablation depth by WLI Surface quality (roughness S_a): Assessed ablated surface quality by LSM/WLI 	cm²) pe	r parameter s	set		

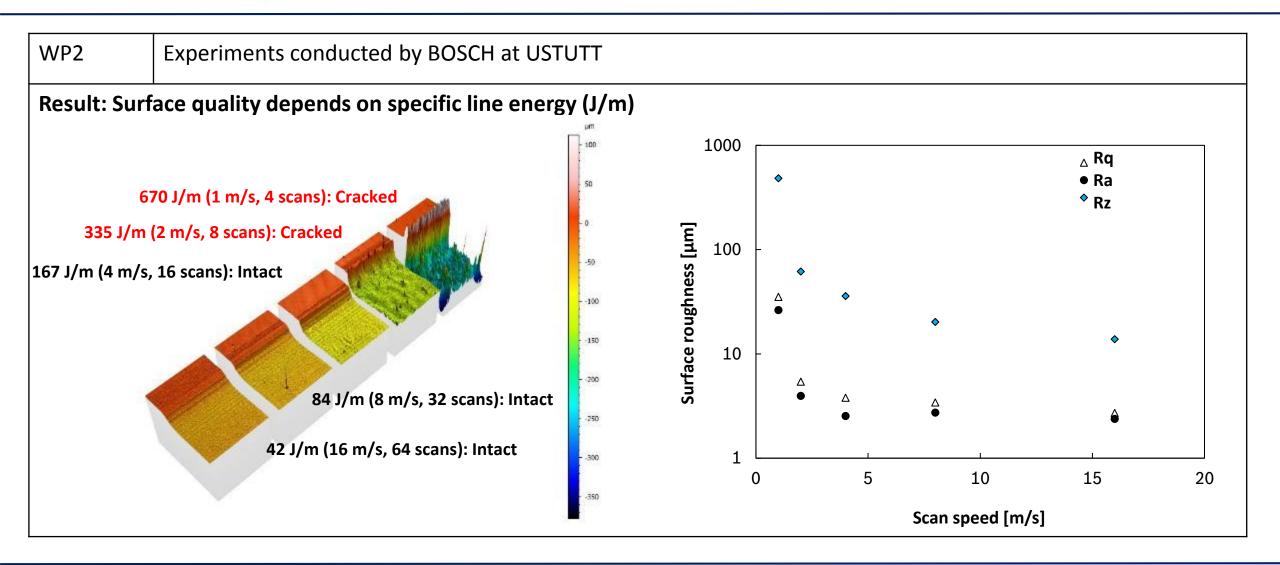

HIPERDIAS







WP2	Experiments conducted by BOSCH at USTUTT			
 High-volume ablation on amplified TruMicro5000 @ USTUTT Objective: Assess process scalability to high laser power Amplified high-power laser system (670 W) Short total experimental times (max: 30 s) 		Parameters (source: USTUTT)		
		wavelength	λ	1030 nm
		pulse duration	τ _p	6 ps
	High max. scan speed (16 m/s)		f_{rep}	300 kHz
No wafer cooling applied High energy input causes wafer cracking above threshold values of:		maximum power	P _{max}	670 W
		focus radius (x)	d _{fx}	140 µm
• n	nax. specific line energy: 170 J/m at 4 m/s scan speed	focus radius (y)	d _{fy}	420 μm
	nax. energy input on 10x10 mm ² square: approx. 3.5 kJ	focal length	F	340 mm
Achiev	ved average ablation rate: 0.29 mm ³ /s (including down times)	beam quality factor	M²	3
		Si wafer diameter	D	200 mm
		Si wafer thickness	h	1.35 mm


V

•

•

optics

Intelliscan20

Conclusion & Outlook Summary Laser ablation: potential, but challenging process for 3D Si structuring 8 KPI's to determine process maturity Demonstrator geometry allows to track progress of KPI's Laser fluence: significant process parameter: Ablation efficiency optimum between 0.5 and 1.0 J/cm² Surface quality deteriorates above efficiency optimum But: above threshold fluence, surface quality improves substantially Major challenge: Upscaling of process to reach productivity KPI (average ablation rate of 1 mm³/s) High-power laser experiments (BOSCH at USTUTT): heat accumulation results in wafer cracking Focus on short- and medium term R&D work @ Bosch: Continue fundamental research on KPI enhancement \rightarrow Include burst mode, fs ablation, investigate high-fluence ablation Specify system requirements based on experimental experience Design of experiments for process upscaling

٠

•

•

•

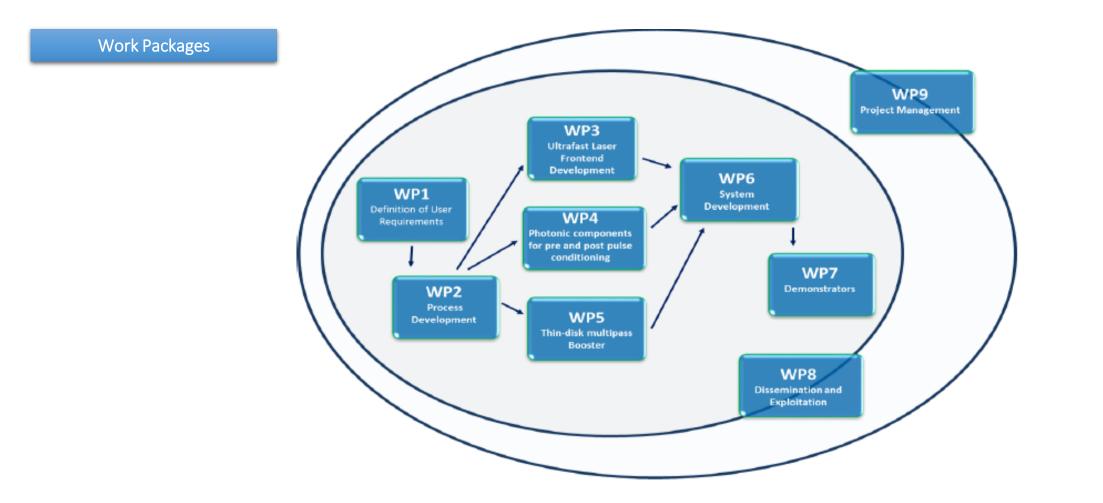
•

•

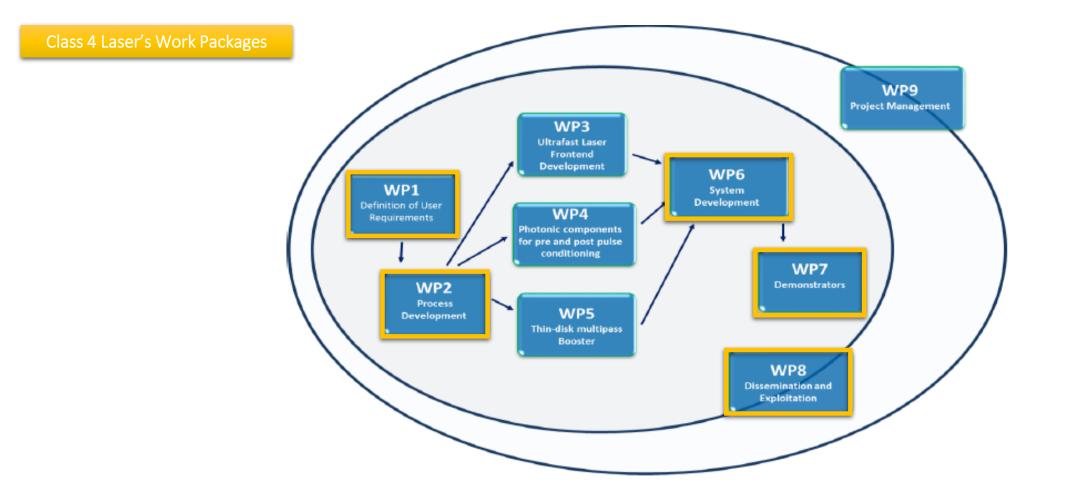
٠

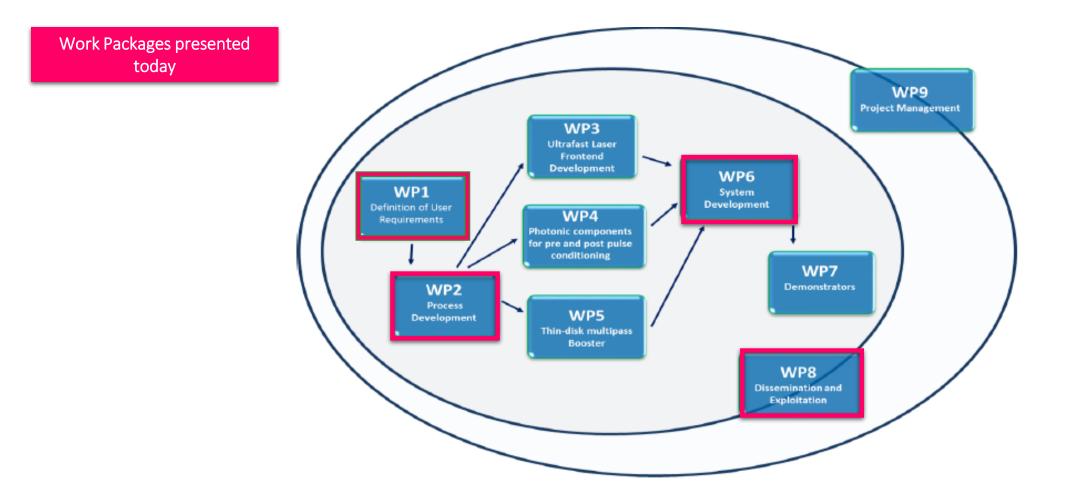
٠

•


Class 4 Laser Professionals AG

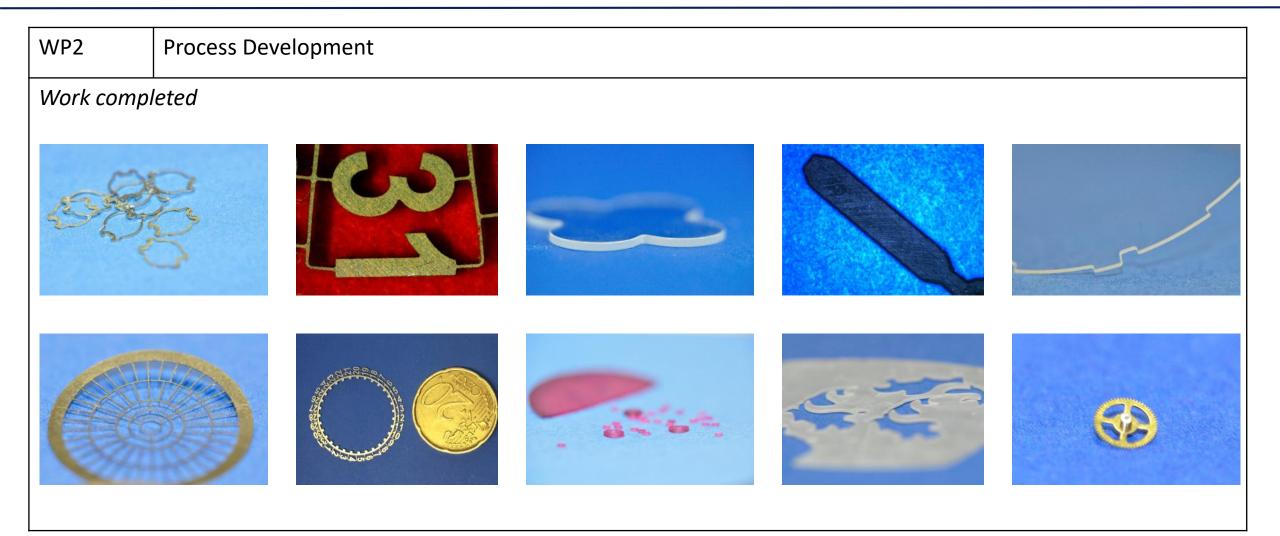
Noémie Dury



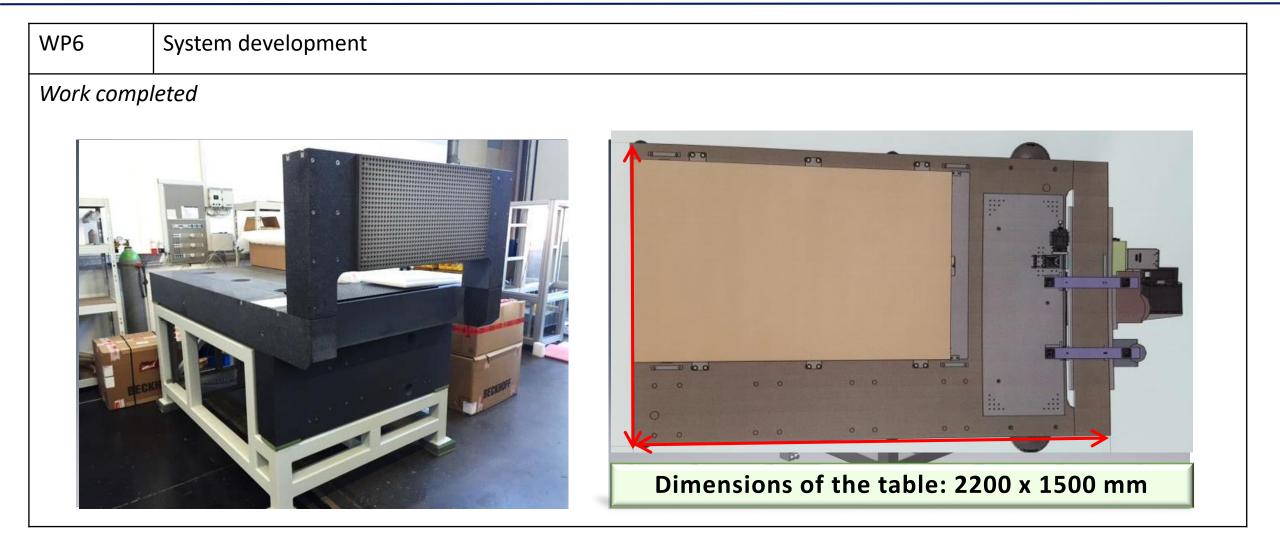


1	Definition of user requirements				
		Key Performance Indicator	Unit	Target Value	
	Benchmarking shape	Parts thickness	mm	0.1 – 0.5	
	Standardized watch arm	Material covered	Metal, ceramic, sapphire		
	Standardized Gear	General dimensions tolerances	μm	From ± 5 to ± 20	
		Specific dimensions tolerances	μm	From ± 2 to +-5	
		Smallest holes	μm	From 50 to 100	
		Maximal side steepness (taper)	Relative to d	imension tolerances	
		Average cutting speed (relative to shape and thickness)	mm/min	≥ 300	
		Shape deviation	μm	+- 2	
		Surface roughness (non-functional)	μm	0.4 (N5)	
	ð m	Surface roughness (functional)	μm	0.1 (N3)	

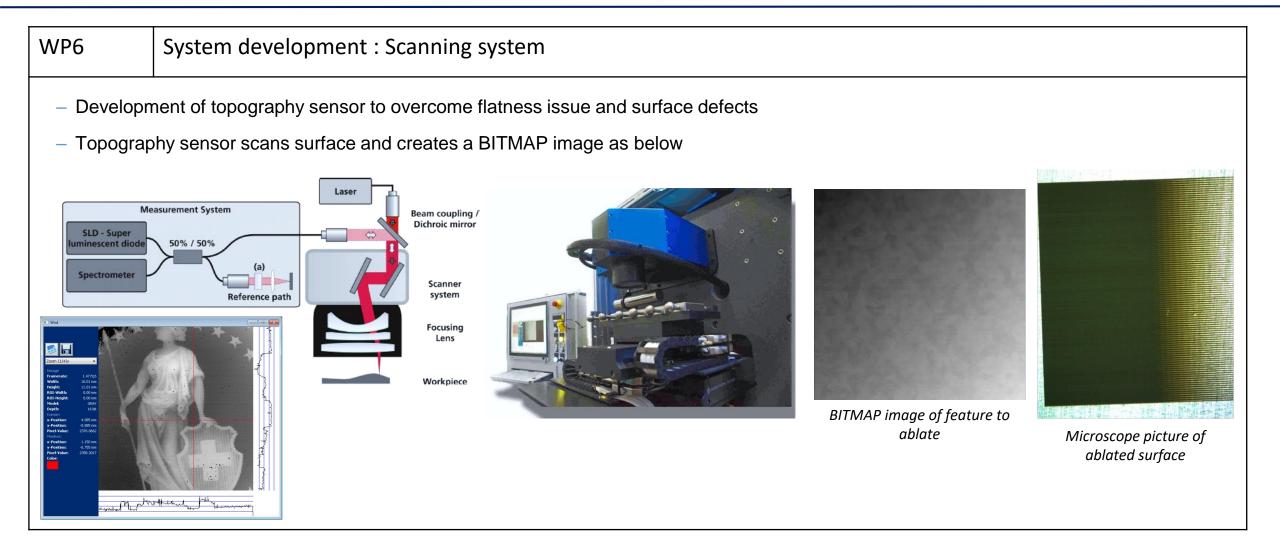
Informal partnership with a big watch making company for validation of the parts

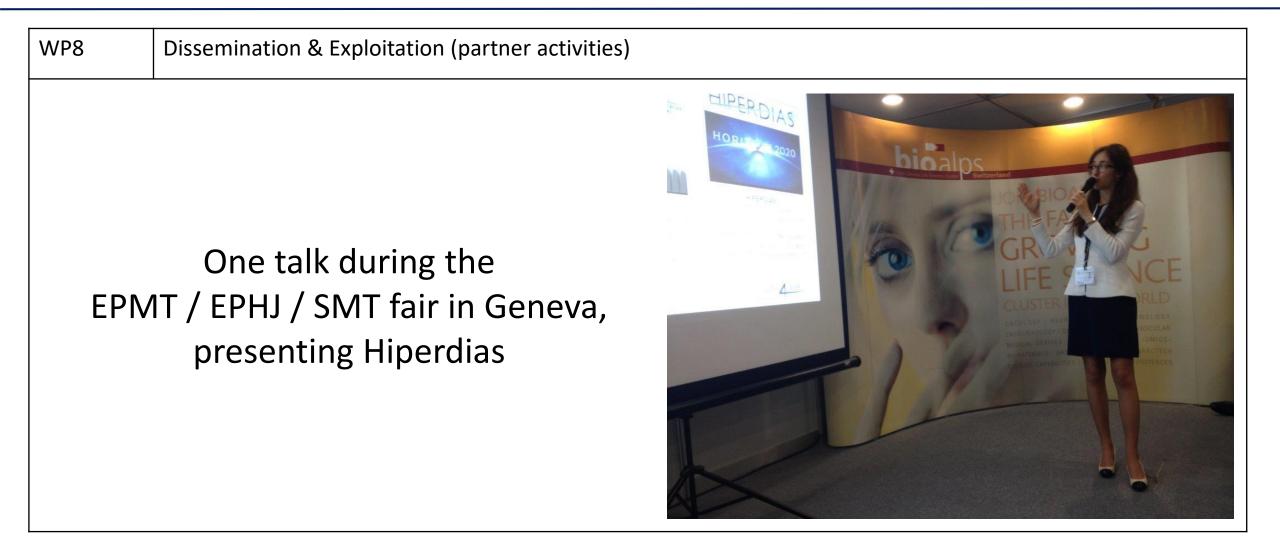


P1	Definition of u	iser requirements		
	•		nuary 17) - Definition of User Requirements C4L - 2.5 MM = 446.25 H	
			on of application requirements cess development pre tests	
	: M01- M04 (May 16) f application specifications	Task 1.2 : M02 - M12 (January 17) Process and system specifications	Task 1.3: M04 - M12 (January 17) Assessment and validation of technical progress	Task 1.4: M01 - M12 (January 17) Interface requirements
Installation of t at C4L	the laser needed for the trials 6 for the first trials to define	Started in March : cutting and ablation trials for benchmarking for diamond ablation and cutting of watch parts . Calculation of the forseen needed laser parameters	C4L & E6 Define necessary characterization and measurement methods. Define benchmark processes; define key performance indicators (KPI) for quantitative progress assessment. September 16	
E6 make a docu need for diamo	ument to summerize their and polishing	C4L & E6 - first ablation trials to determine the ablation threashold / required / pulse duration / laser parameters for th diamond ablation		What do the customer need. Will feed the WP6 T6.1 - E6
	cument to summerize their g of watch parts.	the cutting trials for the watch componants will be started when the system to combine axes with rotating optic is available at C4L : planned october/ November 2016		fill in the table from Lasea
Deliv	vrable sent CW26	C4L & E6 prepare a common document with enduser requirement and system manufacturer requirement this document is then sent to AMP with cc USTUTT and BOSCH.		
		fill in the table from Lasea		



WP2	Process Development		
	WP2	2 - M04 (May 16) - M30 (July 18) - Process Deve C4L - 13 MM = 2320.5 H	lopment
	Process of	levelopement for watch parts cutting and diam	ond polishing
Task 2.2 : M04-M24 (January 18) Fundamental process development fine cutting of metals (LEAD)		Task 2.3 : M04 - M24 (January 18) Fundamental process development diamond ablation	Task 2.4: M22 (November 17) - M30 (July 18) Upscaling of applications for high throughput
benchmarkii	ch : cutting trials for ng. Calculation of the forseen r parameters	Start in March : ablation trials for benchmarking. Calculation of the forseen needed laser parameters	
the cutting trials for the watch componants will be started when the system to combine axes with rotating optic is available at C4L : planned october 2016		C4L & E6 - first ablation trials to determine the ablation threashold / required / pulse duration / laser paameters for th diamond ablation	
planned octo	ober 2016	ablation	





WP6	System development			
Next 6 m		M03-M42 - System development C4L - 28.5 MM = 5087.25 H	(LEAD)	
	Development of	the system for Watch parts cutting and di	iamond polishing	
	ask 6.4: M08 - M36 (January 19) stem layout and build-up (LEAD)	Task 6.2 : M03 - M15 (April 17) Definition of laser & optics sizes, optics Integration of laser and optics (LEAD) Specifications (Incl. fibre)	Task ᡩ _a ᢃ _i k M 08 M 122 M 49 (ዓጠኦቷց)17) Developmentse f the intreffages (LEAD)	
5 axes	system design for 3 optical stations and 2 different lasers	optimisation of the OCT vision and scanning divice for diamond polishing		
	System build up			

