

THE VENTURE

a 'start-up' based in Limoges to commercialise an IP portfolio

From University of Bath, XLIM (CNRS/Limoges) & NKT

 exploiting gas-phase materials & specialty fibre in compact photonic devices (PMC)

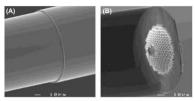
Multi-award and highly praised technology LaserFocusWorld Commendation of technical excellence 2008 Prism award finalist 2015

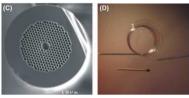
• world-leading technical team Benabid: 2005 Fresnel Prize, Optical Society of America Fellow 2010 An Xlim team with world-class expertise in optical fibre

• A scientific and logistical support from a CNRS laboratory

Optical fibre Landscape

			MCVD	Stac	Manufacturers	
index	Passive		Telecom, Sensing, Passive optical componant 			Corning, Nufern, OFS… (USA) NTT… (JP) Draka (Europe)
Step	Active	Laser oscillator stage, Low power laser amplification stage			NKT (DK) IPG (USA)	
(III	Solid Core PCF	Passive			Non linear optic, Dispersion compensation, Spatial filtering …	NTT, SUMITOMO (JP) IMRA (USA) NKT (DK)
er (PCF		Active	$\bigcirc \bigcirc$	High power short pulse laser amplification…	e	IMRA (USA) NKT (DK)
ic Crystal Fiber (PCF)	Hollow-core PCF	Photonic Bandgap (HC-PBG)			Gas/light interaction Soliton compression…	CORNING (USA) OFS (USA) NKT (DK) GLO (FR)
Photonic		Inhibited Coupling (Kagome)			Gas/light interaction High power short pulse beam delivery High power short pulse compression	GLO (FR)


The Photonic MicroCell[™](PMC): a unique photonic component


A PMC IS

1. HOLLOW-CORE PHOTONIC CRSYTAL FIBRE FILLED WITH A GAS MEDIUM AND TERMINATED ENDS

- 2. HIGHLY COMPACT AND INTEGRABLE IN THE GROWING LASER MARKET
- 3. A PLATFORM TECHNOLOGY WITH SEVERAL UNIQUE FUNCTIONALITIES

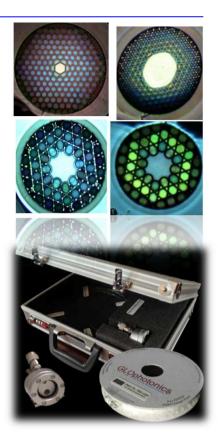
- New laser wavelengths
- Flexible high power and ultra-fast laser pulse delivery
- New laser applications

GLO prototype-product family

• PMC-OEM

Description: A length of Hollow-Core Photonic Crystal Fibre (HC-PCF) with protecting metallic cap Applications/Clients: Research/Scientific lab, R&D/Laser manufacturers

• PMC-FC


Description: A length of Hollow-Core Photonic Crystal Fibre (HC-PCF) filled with frequency-converter gas medium and with sealing end terminations. Applications/Clients: Research/Scientific lab, R&D/Laser manufacturers, Micromachining /Laser manufacturer & machine integrators, DNA sequencing and cell imaging/ Diagnostic labs and surgery

• PMC-PL

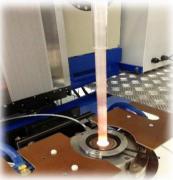
Description: A length of Hollow-Core Photonic Crystal Fibre (HC-PCF) filled with frequency-converter gas medium and with sealing end terminations. Applications/Clients: Research/Scientific lab, R&D/Laser manufacturers, Micromachining /Laser manufacturer & machine integrators, DNA sequencing and cell imaging/ Diagnostic labs and surgery

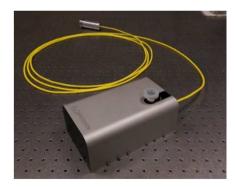
PMC-TECSOL

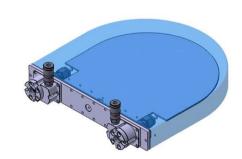
Description: A bespoke Hollow-Core Photonic Crystal Fibre (HC-PCF) and or PMC and/or feasibility study Applications/Clients: Research/Scientific lab, R&D for industrials

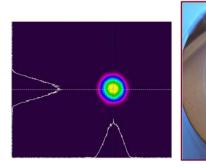
GLOphotonics HIPERDIAS contribution : Overview

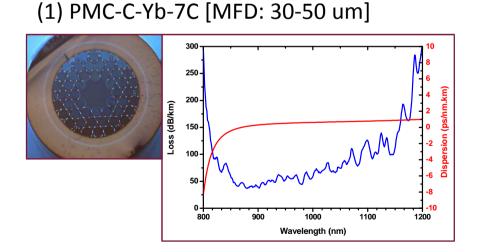
• Extensive knowledge of Kagome fibre drawing and industrialization


D4.7

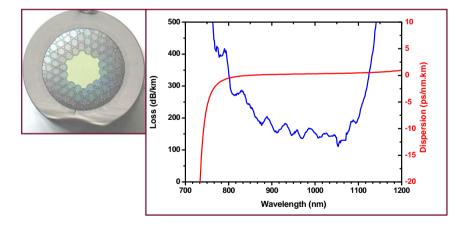

• Fibre characterization benches


D7.4


• Mechanical Design and prototyping abilities D4.4; D4.4; D4.7



GLOphotonics HIPERDIAS contribution :


 Fabrication and characterization of photonic microcell (PMC) module for fibre-delivery of ultra-short high power pulse in operational environment

Based on GLO standardized HC-PCF

Two fibers will be used to qualify the fiber delivery module :

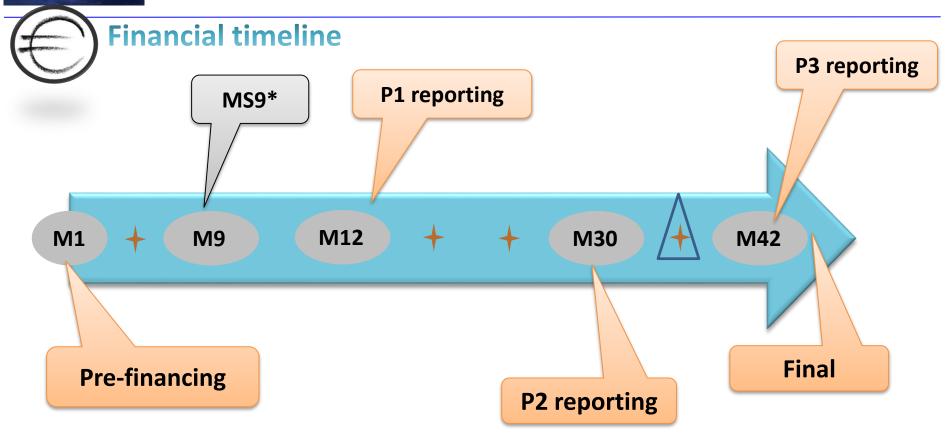
GLOphotonics HIPERDIAS contribution :

 Fabrication and characterization of photonic microcell (PMC) module for fibre-delivery of ultra-short high power pulse in operational environment

Based on USP laser delivery module

Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

H2020 Financial processes, rules \mathbb{R} Reporting **Kite Innovation Deborah Trabut**

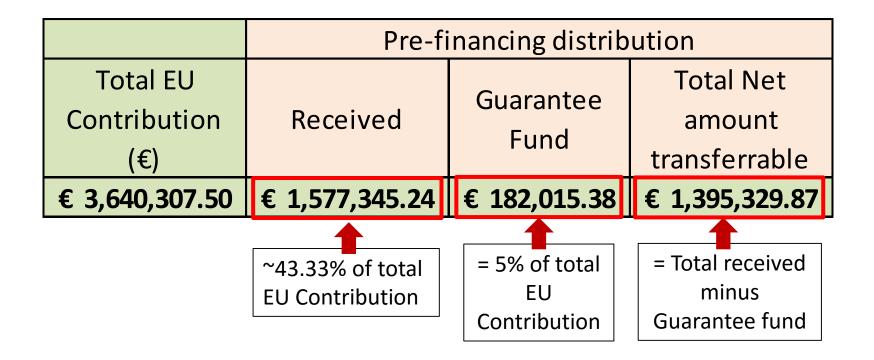


Financial processes

Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

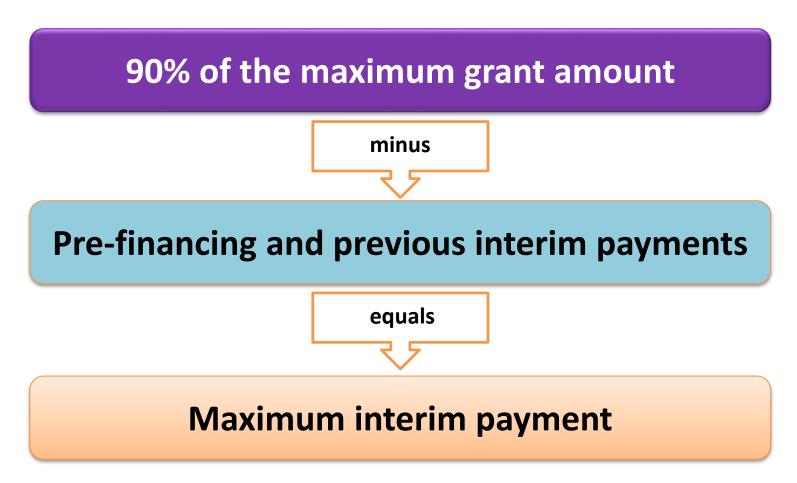
+ – at six monthly intervals, the management board will request updated technical & financial reports

*MS9 – Completion of reporting "dry run" with all partners. T9.2 Means of verification: Draft financial report generated

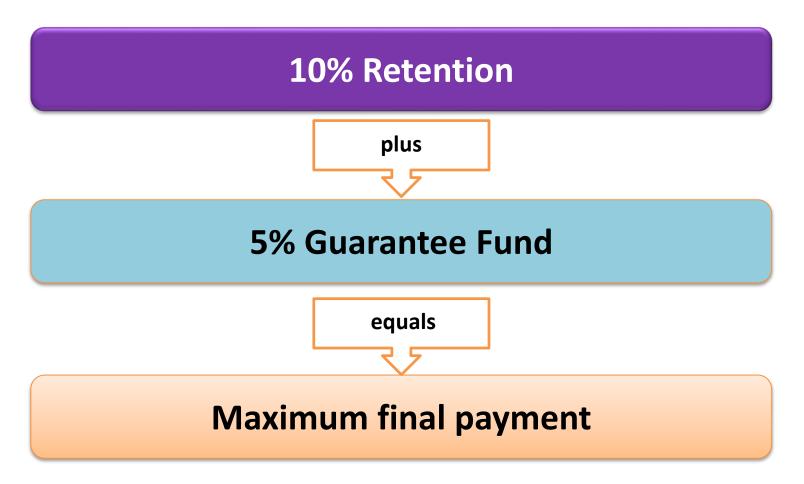

- at M36 financial internal audit to be carried out by each institution

HORIZON 2020

Project pre-financing breakdown


Partners pre-financing breakdown

			Pre-financing distribution					on	
	Partner	Total EU Contribution		Received		Guarantee Fund		Total Net	
Partner	short							amount	
	Name	(€)						transferrable	
1	USTUTT	€	909,187.50	€	393,950.94	€	45,459.38	€	348,491.57
2	AMP	€	555,750.00	€	240,806.48	€	27,787.50	€	213,018.98
4	AMO	€	371,742.50	€	161,076.03	€	18,587.13	€	142,488.90
5	BOSCH	€	499,002.50	€	216,217.78	€	24,950.13	€	191,267.66
6	XLIM	€	299,500.00	€	129,773.35	€	14,975.00	€	114,798.35
7	LASEA	€	441,750.00	€	191,410.28	€	22,087.50	€	169,322.78
8	GLO	€	289,750.00	€	125,548.68	€	14,487.50	€	111,061.18
9	E6	€	123,417.50	€	53,476.80	€	6,170.88	€	47,305.93
	E6 UK	€	8,832.50	€	3,827.12	€	441.63	€	3,385.50
10	KITE	€	141,375.00	€	61,257.79	€	7,068.75	€	54,189.04
TOTAL		€	3,640,307.50	€	1,577,345.24	€	182,015.38	€	1,395,329.87


Project interim payments

Project final payment

Partners payment breakdown throughout project*

Max interim payment = 90% limit of max grant amount – received pre-financing

			Pre-fi	nancing distrib	ution				Total check = net	
	Partner	Total EU		Guarantoo	Total Net	90% limit of	Max interim	Max final	pre finance +	
Partner	short	Contribution	Received	Guarantee	amount	max grant	payments during	payment at the	Period payment -	
	Name	(€)		Fund	transferrable	amount	project	end of project	final payment	
1	USTUTT	€ 909,187.50	€ 393,950.94	€ 45,459.38	€ 348,491.57	€ 818,268.75	€ 424,317.81	€ 136,378.13	€ 909,187.50	
2	AMP	€ 555,750.00	€ 240,806.48	€ 27,787.50	€ 213,018.98	€ 500,175.00	€ 259,368.52	€ 83,362.50	€ 555,750.00	
4	AMO	€ 371,742.50	€ 161,076.03	€ 18,587.13	€ 142,488.90	€ 334,568.25	€ 173,492.22	€ 55,761.38	€ 371,742.50	
5	BOSCH	€ 499,002.50	€ 216,217.78	€ 24,950.13	€ 191,267.66	€ 449,102.25	€ 232,884.47	€ 74,850.38	€ 499,002.50	
6	XLIM	€ 299,500.00	€ 129,773.35	€ 14,975.00	€ 114,798.35	€ 269,550.00	€ 139,776.65	€ 44,925.00	€ 299,500.00	
7	LASEA	€ 441,750.00	€ 191,410.28	€ 22,087.50	€ 169,322.78	€ 397,575.00	€ 206,164.72	€ 66,262.50	€ 441,750.00	
8	GLO	€ 289,750.00	€ 125,548.68	€ 14,487.50	€ 111,061.18	€ 260,775.00	€ 135,226.32	€ 43,462.50	€ 289,750.00	
9	E6	€ 123,417.50	€ 53,476.80	€ 6,170.88	€ 47,305.93	€ 111,075.75	€ 57,598.95	€ 18,512.63	€ 123,417.50	
	E6 UK	€ 8,832.50	€ 3,827.12	€ 441.63	€ 3,385.50	€ 7,949.25	€ 4,122.13	€ 1,324.88	€ 8,832.50	
10	KITE	€ 141,375.00	€ 61,257.79	€ 7,068.75	€ 54,189.04	€ 127,237.50	€ 65,979.71	€ 21,206.25	€ 141,375.00	
TOTAL		€ 3,640,307.50	€ 1,577,345.24	€ 182,015.38	€ 1,395,329.87	€ 3,276,276.75	€ 1,698,931.51	€ 546,046.13	€ 3,640,307.50	

*subject to change throughout the project and validation of financial reports by EU

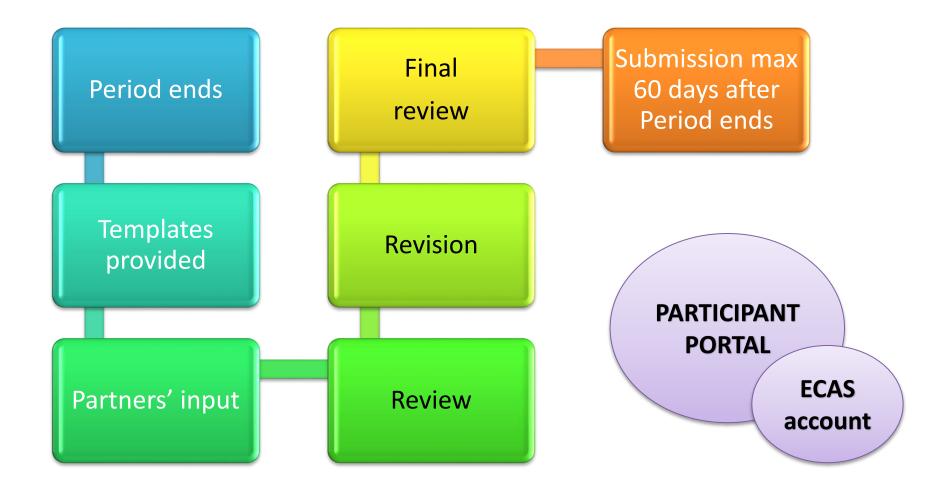
Budget transfers

The estimated budget breakdown indicated in Annex 2 may be adjusted by transfers of amounts between beneficiaries or between budget categories (or both). This does not require an amendment according to Article 55, if the action is implemented as described in Annex 1.

However, the beneficiaries may not add costs relating to subcontracts not provided for in Annex 1, unless such additional subcontracts are approved by an amendment or in accordance with Article 13.

Project reporting

6 monthly Internal updates


- Technical progress
- Management of the resources

Periodic report

- All activities
- All costs

FINANCIAL

- All costs incurred in the Period
- Per activity type
- Per cost type
- With detailed explanation
- Include the receipts of actions (see article 5.3.3)

TECHNICAL

- Explanation of the work carried out
- Overview of progress towards DoA & deviations
- A summary for publication
- The answers to the questionnaire covering issues related to the action implementation

H2020 financial rules and requirements

Project documentation

Grant Agreement

- Core
- Annex I DoA (Part A & Part B)
- Other annexes

Consortium Agreement

Guidance available on the Participant Portal

- Rules for participation
- IPR helpdesk
- Etc...

Direct costs

Are costs that are directly linked to the action implementation and can therefore be attributed to it directly. They must not include any indirect costs

Indirect costs

Are costs that are not directly linked to the action implementation and therefore cannot be attributed directly to it.

Indirect costs are eligible if they are declared on the basis of the **flat-rate of 25% of the eligible direct costs** (see Article 5.2), from which are excluded:

- costs of subcontracting and
- costs of in-kind contributions provided by third parties which are not used on the beneficiary's premises;

Eligible costs

- \checkmark they must be actually incurred by the beneficiary
- ✓ they must be incurred in the period set out in Article 3, with the exception of costs relating to the submission of the periodic report for the last reporting period and the final report (see Article 20)
- ✓ they must be indicated in the estimated budget set out in Annex 2
- ✓ they must be incurred in connection with the action as described in Annex 1 and necessary for its implementation
- ✓ they must be identifiable and verifiable, in particular recorded in the beneficiary's accounts in accordance with the accounting standards applicable in the country where the beneficiary is established and with the beneficiary's usual cost accounting practices
- ✓ they must comply with the applicable national law on taxes, labour and social security, and
- ✓ they must be reasonable, justified and must comply with the principle of sound financial management, in particular regarding economy and efficiency

Eligible direct costs

- ✓ Personnel costs (for full details refer to GA page 15 to 19)
- ✓ Travel costs and related subsistence allowances
- ✓ The depreciation costs of equipment, infrastructure or other assets
 - (new or second-hand) as recorded in the beneficiary's accounts are eligible, if they were purchased in accordance with Article 10 and written off in accordance with international accounting standards and the beneficiary's usual accounting practices
- ✓ The cost of renting or leasing equipment, infrastructure or other assets
 - (including related duties, taxes and charges such as non-deductible value added tax (VAT) paid by the beneficiary) are also eligible, if they do not exceed the depreciation costs of similar equipment, infrastructure or assets and do not include any financing fees.

$\checkmark\,$ Cost of other goods and services

• consumables and supplies, dissemination (including open access), protection of results, certificates on the financial statements (if they are required by the Agreement), certificates on the methodology, translations and publications.

✓ Capitalised and operating costs of "large research infrastructure"

- The value of the large research infrastructure represents at least 75% of the total fixed assets (at historical value in its last closed balance sheet before the date of the signature of the Agreement or as determined on the basis of the rental and leasing costs of the research infrastructure)
- the beneficiary's methodology for declaring the costs for large research infrastructure has been positively assessed by the Commission ('ex-ante assessment')
- the beneficiary declares as direct eligible costs only the portion which corresponds to the duration of the action and the rate of actual use for the purposes of the action, and
- they comply with the conditions as further detailed in the annotations to the H2020 grant agreements.

Ineligible costs

HORIZ N 2020

- costs related to return on capital
- debt and debt service charges
- provisions for future losses or debts
- interest owed
- doubtful debts
- currency exchange losses
- bank costs charged by the beneficiary's bank for transfers from the Commission
- excessive or reckless expenditure
- deductible VAT
- costs incurred during suspension of the implementation of the action (see Article 49)
- Cost declared under another EU grant

Certificate on the financial statements

A 'certificate on the financial statements' (CFS) will have to be submitted at the end of the project if the request for total contribution is EUR 325 000 or more.

✓ USTUTT
✓ AMP
✓ AMO
✓ BOSCH
✓ LASEA

Some common mistakes

- Estimated costs
- Costs before the start of the Project
- Identifiable deductible VAT
- Incorrect exchange rate
- Indirect costs charged as Direct costs
- > Employment costs for people not directly employed nor paid by beneficiary
- Incorrect calculation of the hourly rate
- Unreliable/ Inexistent timesheet
- Travel costs / conference costs
- Equipment costs

Article 18.1 – Obligation to keep records and other supporting documentation

- ✓ The beneficiaries must for a period of *five* years after the payment of the balance — keep records and other supporting documentation in order to prove the proper implementation of the action and the costs they declare as eligible.
- ✓ They must make them available upon request (see Article 17) or in the context of checks, reviews, audits or investigations (see Article 22).
- ✓ If there are on-going checks, reviews, audits, investigations, litigation or other pursuits of claims under the Agreement (including the extension of findings; see Articles 22), the beneficiaries must keep the records and other supporting documentation until the end of these procedures.
- The beneficiaries must keep the original documents. Digital and digitalised documents are considered originals if they are authorised by the applicable national law. The *Commission* may accept non-original documents if it considers that they offer a comparable level of assurance.

Article 20.6 – Currency for financial statement and conversion into euro

- ✓ Financial statements must be drafted in euro.
- ✓ Beneficiaries and linked third parties with accounting established in a currency other than the euro must convert the costs recorded in their accounts into euro, at the average of the daily exchange rates published in the C series of the Official Journal of the European Union, calculated over the corresponding reporting period.
- ✓ If no daily euro exchange rate is published in the Official Journal of the European Union for the currency in question, they must be converted at the average of the monthly accounting rates published on the Commission's website, calculated over the corresponding reporting period.
- ✓ Beneficiaries and linked third parties with accounting established in euro must convert costs incurred in another currency into euro according to their usual accounting practices.

Any questions?

Background

- Formed in 2006 with offices in Scotland and Yorkshire
- 13 members of staff
- Over 10 years experience of working with FP7 and now Horizon 2020

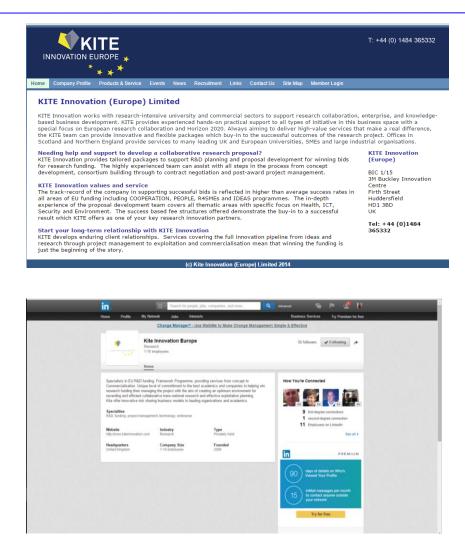
Our Services include;

- Proposal Writing
- Project Management Services
- Exploitation Planning and Commercialisation Services
- Strategy Development and Implementation Services

Huddersfield Office

We have over "30" FP7 and Horizon2020 projects under management in our current portfolio

Sectors include; Health, ICT, Energy, Nanotechnologies, Environmental Science, Security and Transport



Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

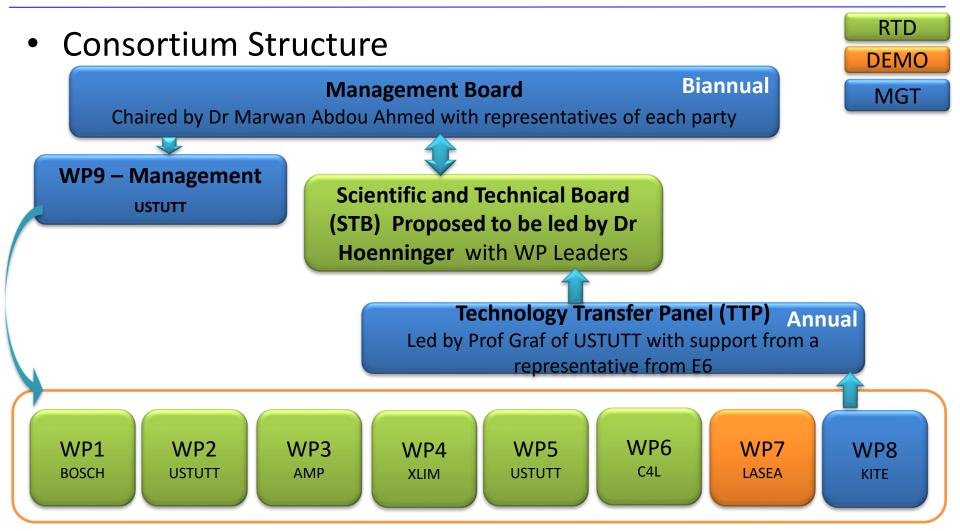
• Website

www.kiteinnovation.com

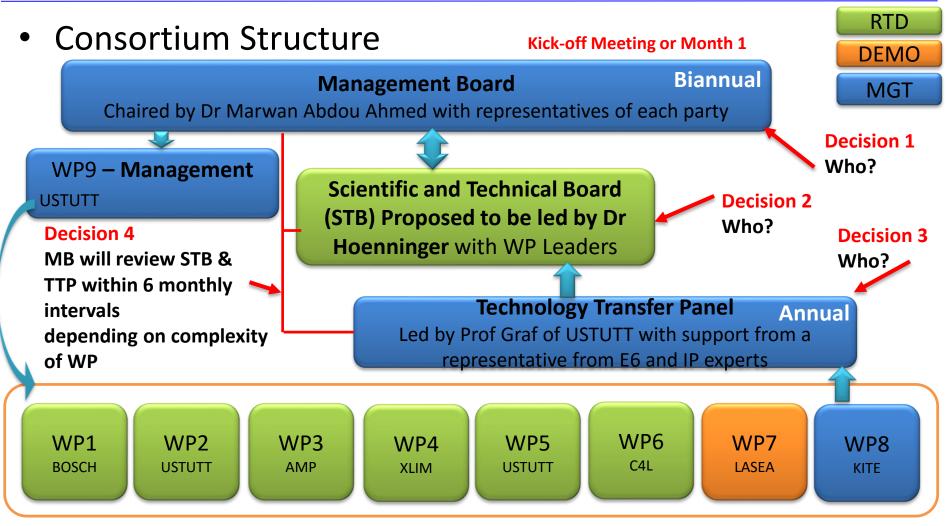
You can follow us on
 Linked in

Kite Innovation (Europe) Ltd

Project Management (WP9) & Exploitation Planning & Dissemination (WP8)



- Main objective of today is to highlight the following:
- Governance & Management Structure
- Project Management
- Reporting Procedures, Frequency and Format
- Deliverables
- Dissemination Planning and Execution
- Next 6 month overview



Section 4 (9) in the Grant Agreement Annex 1 (Description of the Action) in Part B2. 3.4

Section 4 (9) in the Grant Agreement Annex 1 (Description of the Action) in Part B2. 3.4

Communication within the Consortium 3.2 Management Structure and procedures Part B of GA (p48)

- Early briefing to partners on the expectations and preparations required for the kick-off meeting
- Regular informal contact between the management team and the WP Leaders
- Brief updates every month of progress requested of each partner
- Progress reports posted on the project website on a regular monthly basis
- Formal updates every quarter and annually

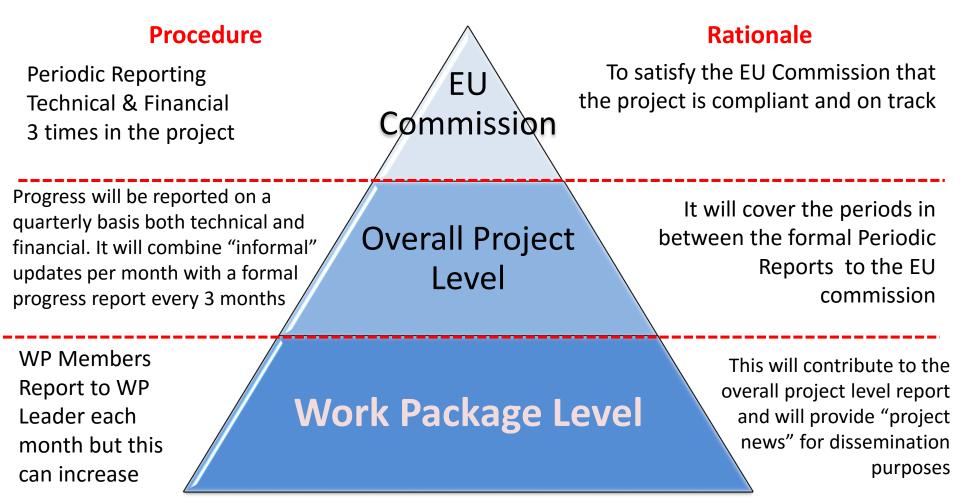
Project Management

3.2 Management Structure and procedures Part B of GA (p46)

- Coordination of the technical & research activities of the project at consortium level
- Overall legal, contractual, ethical, financial and administrative management
- Preparing, updating and managing the consortium agreement between partners
- Set-up and maintenance of the Hiperdias secure online collaboration tool for project management

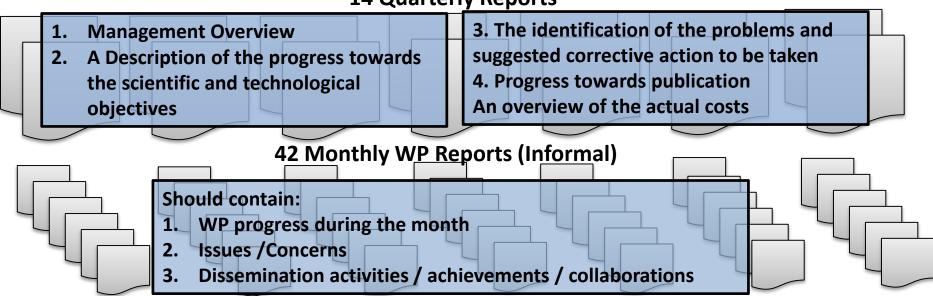
Project Management

3.2 Management Structure and procedures Part B of GA (p46)


- Coordination of knowledge management and other research-related activities
- Managing competitive calls or tenders to select subcontractors and/or new partners
- Supervising relevant science and society issues related to research activities
- Managing the exploitation and dissemination activities
 SQUADRON_{TM} (p 39 & 50)
 Hiperdias will appoint an end-user advisory

Group to verify the technology (p50)

Reporting Procedures, Frequency and Format

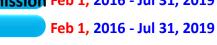

Reporting Procedures, Frequency and format

3 Formal Periodic Reports

- 1. Contains Technical & Financial Reporting
- 2. MB will give CPO feedback within 45 days
- 3. The CPO must submit report on EU SyGMa within 60 days

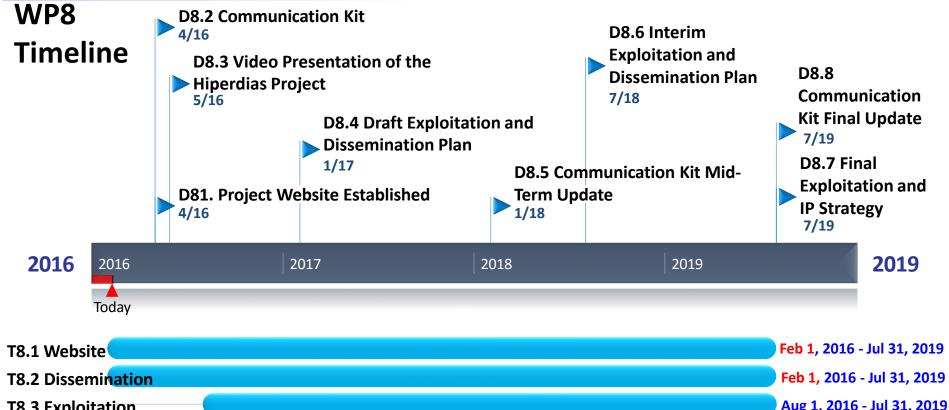
The CPO will generate the report & circulate for MB approval within 30 days of the end of the reporting period

14 Quarterly Reports


W9

- Timeline
- The Lead Beneficiary of a Deliverable Report will be responsible for working in collaboration with partner/s to produce a detailed report on the subject area
- The deliverable should be sent to the Coordinator 2 weeks prior to submission date
- Once verified by the Coordinator the PM will submit the deliverable via the portal

T9.5 Management of the Consolidation of Technical & Financial Reports and coms. with the Commission Feb 1, 2016 - Jul 31, 2019


T9.6 Monitoring and Progress Chasing / submission of Deliverables & Milestones

Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

Planned specific activities include; (part B, p42)

- The creation of a project website designed to inform interested parties of the progress of the project as well as informing the general public
- The partners will issue a press release to local and international press at the beginning of the project
- A promotional video clip will be produced for YouTube and the project website
- Two end-user advisory sessions will be scheduled at project kick-off and immediately prior to the commencement of WP7
- A project workshop will showcase the demonstration activities in the final phase of the project.
- Journals, websites, events and conferences will be targeted.

"Should have Started Tasks";

WP No	WP Leader	Lead B	Participants	T.no	Task Description	Start	Finish
WP1	BOSCH	BOSCH	BOSCH,E6,C4L	T1.1	Collection of end-user application specifications	1	4
WP1	BOSCH	LASEA	C4L	T1.4	Interface requirements	1	12
WP4	XLIM	USTUTT	AMP,AMO	T4.1	Design of grating compressors	1	18
WP5	USTUTT	USTUTT	USTUTT	T5.1	Design of the thin-disk multipass amplifier	1	6
WP8	KITE	KITE	ALL	T8.1	Web site	1	42
WP8	KITE	KITE	ALL	т8.2	Dissemination	1	42
WP8	KITE	KITE	ALL	T8.5	Management of Intellectual Property	1	42
WP9	USTUTT	KITE	KITE	T9.1	Management and coordination of the project	1	42
WP9	USTUTT	KITE	KITE	т9.2	Financial management of the project	1	42
WP9	USTUTT	KITE	KITE	т9.3	Management of ethical and gender related issues	1	42
WP9	USTUTT	KITE	KITE	т9.4	Establishment of consortium bodies, and of consortium meetings	1	42
WP9	USTUTT	KITE	KITE	Т9.5	Management of the consolidation of technical and financial reports	1	42
WP9	USTUTT	KITE	KITE	Т9.6	Monitoring and progress chasing and submission of deliverables and milestones	1	42

Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

Lasea at a glance

From application labs to production

- ► Highly qualified team (41) including 28 Engineers
- Laser Expertise / Solution provider
- Laser Machine manufacturing
- Laser Equipment installation and maintenance

Process Development

OEM systems and laser workstations

Laser production line

Serving world class companies

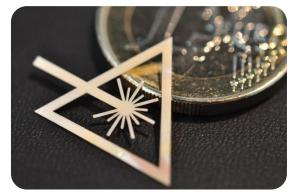
Already 200 systems over the world

Laser Cutting

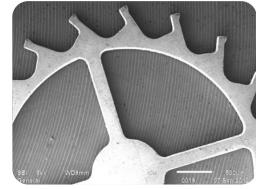
Laser cutting applies to all materials (hard, fragile, soft, etc.).



"Ressort spiraux" (Metal)



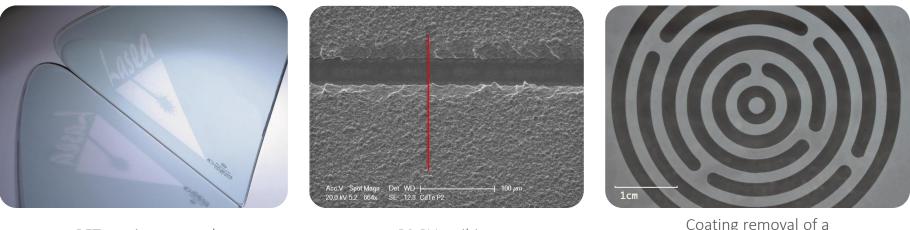
"Ressort spiraux" (Sapphire)



IOL (Polymer)

"Applique" (Mother of pearl)

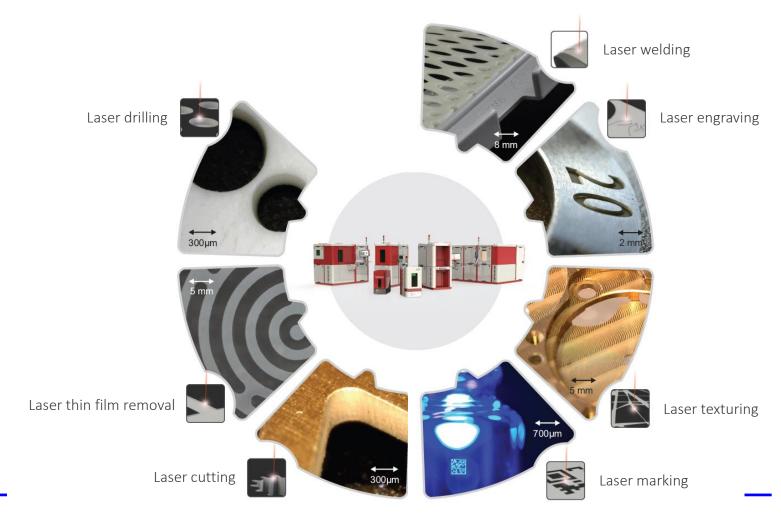
"Roue d'échappement" (Metal)



Laser Thin Film removal

Laser thin film removal enables selective engraving without delamination, bumps or micro cracks in the fields of solar cells, OLED's and microelectronics.

PET coating removal


P2 PV scribing

Coating removal of a metal layer on glass

For each application a laser solution and machine

• Gantt of the first year

	Item	M	¥	8	₹	9	99	M	9	2	MIC	M11	M12	MI3	M14	MI5	MI6	MI 7	M	6 W 8	M21	M22
	WP1 - Definition of User Requirements								M1.	1	M1.2	2	M1.3									
F1.1	Collection of end-user application specifications			1	D1.1								M1.4									
F1.2	Process and system specifications]			1	D1.2									
	Assessment and validation of technical progress]	1	1		1	D1.3									
r1.4	Interface requirements										1	1	D1.4									
	WP2 - Process Development																					
T2.1	Fundamental process development 3D Siprocessing]														
T2.2	Fundamental process development fine cutting of metals]	1			1										
T2.3	Fundamental process development diamond ablation					[]	1	1	1	1				1		1	Ī		1	1
Г2.4	Upscaling of applications for high throughput					å										~~~~~~						
	WP3 - Ultrafast laser front-end development									M3.1	1										M3.:	2
T3.1	50-W, 300-fs laser >1 MHz at 1030nm					[1	1	1	D3.1												
T3.2	200-W, ~500-fs laser >1MHz at 1030nm							1	1										Ī		D3.2	2
T3.3	Flexible user interface including high speed modulation a high power pulse train																					
	WP4 - Photonic components for pre-and-post-pulse conditioning			M4.1			M4.2	2	M4.	3			M4.4 M4.5		١		44.4 44.8					
Γ4.1	Design of grating compressors							1					M4.6			Į.	/4.9					
Г4.2	Development of a lithography process for the fabrication of pulse compression gra-	ating	s		[[1	1	1	1	1						1			1	1
Г4.3	Development of an etching process for the fabrication of optical components							-														
Г4.4	Fabrication and characterization of photonic microcell (PMC) module				D4.1	[-	1	7		1	3	D4.2					Į	34.3		1	3
Г4.5	Design/Fabrication of photonic microcell module with integrated coupling optics																					
Г4.6	Design and Fabrication of polarization maintaining hollow-core photonic crystal																	Î			1	1
	WP5 - Thin-disk Multi-pass Booster																					M5.1
r5.1	Design of the thin-disk multipass amplifier			}			D5.1	1														
T5.2	Assembly & characterization of Yb:YAG thin-disk multipass amplifier							1	1	Ĩ	1	1				Ĩ	1		Ĩ			D5.2
T5.3	Second and third harmonics generations						*******				~~~~~~		6		ð		5	2		-		1
r5.4	Integration of the Yb:YAG thin-disk multipass amplifier																			51.111		
T5.6	Demonstration of a 1kW, sub-1ps laser system																					0
	WP6- System development								M6.	1			M6.2									
T6.1	Definition of interfaces							1	1		1	1	D6.1									
T6.2	Definition of laser & optics sizes; optics specifications (incl. fibre)					[1	1	Ĩ	1	1	[]		1	06.2						
т6.3	Development of the interfaces																					
T6.4	System layout and build-up								1	Ĩ	1	1	m			Ĩ		x6.3	Ē		1	1
T6.5	Integration of laser and optics									1	- <u>}</u>	† The second sec					- f			-		1
	niteBratier et laser and optica								š			3	š		ž.							

Lasea's involvement

WP1: collection of all partners' requirements, end-users specifications

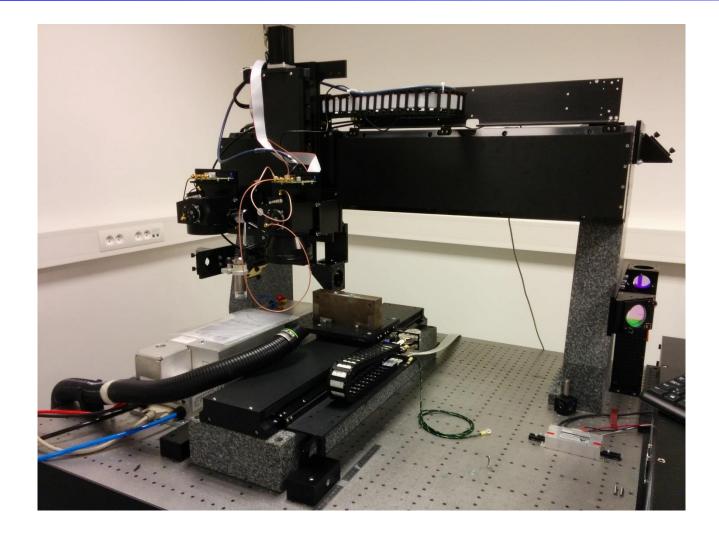
 WP2: Process development: high throuhput 3D silicon processing, diamond processing and fine cutting materials

• WP6: System development: definition of system's interfaces and features to integrate for proof of concept

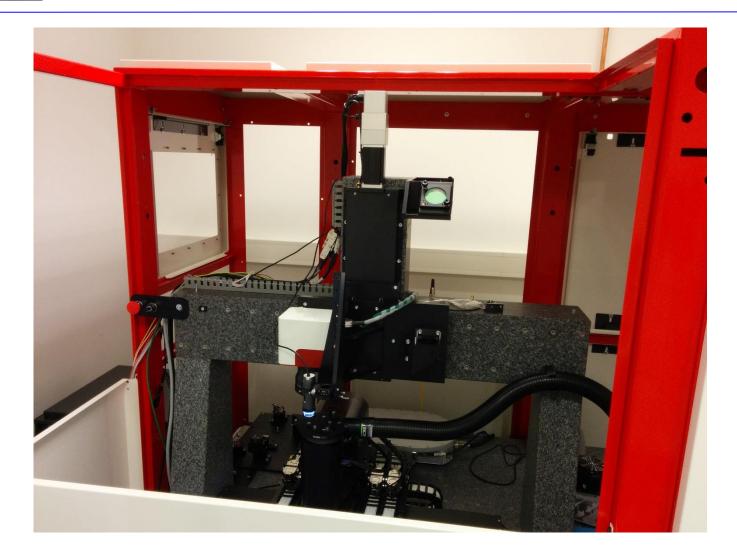
- WP1 Definition of user requirements
 - Task 1.4 (Leader) : Interfaces requirements : Laser, Scanner, motion, opto-mechanics, software communication

- WP2 Process development
 - Task 2.1: 3D Si processing : Influence on system design
 - Task 2.4 : upscaling 3D Si processing with BOSCH and USTUTT

- WP6 System development
 - Task 6.1 (Leader): Interfaces definition : protocols and connections to control : scanner (XYZ), axes (XYZ), laser, joystick, vacuum system, fume extraction
 - Task 6.2: Defining optics specifications, laser beam delivery, systems mechanical limitations
 - Task 6.3: Design and development of software interfaces, control combining laser, CNC and Scanner.



- Task 6.4: Design of the system and build up : Integration of XYZ axes, scanner, camera, fume extractor, sample vacuum system
- Task 6.5: Integration of beam delivery optics, scanner, laser, control units. Functionality checks.
- Task 6.6 (Leader): Evaluation of the system's properties
 - use of own low power laser,
 - characterisation of positioning tolerances of scanner and XYZ
 - Characterisation of laser-matter interaction
 - Guarantee of the sample vacuum fixture system, fume extraction system

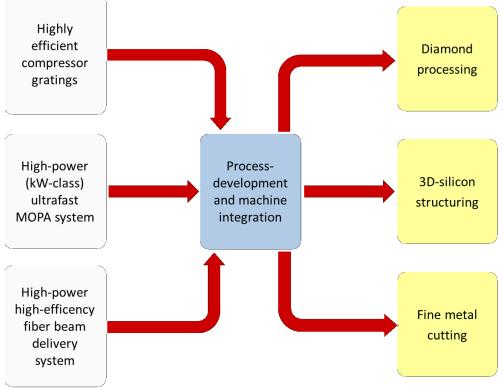

Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

High throughPut lasER-based processing of Diamond And Silicon (HIPERDIAS)

Marwan Abdou Ahmed

Overall presentation of the project

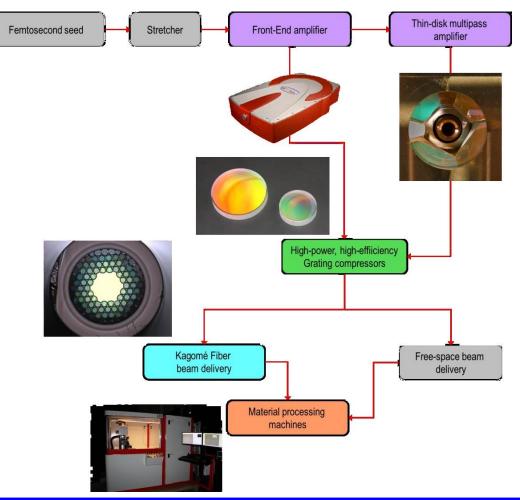


- Call H2020-ICT-27-2015:
 - High-throughput laser-based manufacturing: <u>High-power, high-efficiency laser sources</u> (both continuous wave and <u>pulsed</u>); <u>novel technologies and devices for beam delivery</u> and for processing of multiple beams from laser source arrays; <u>high-performance optical devices and systems</u>; fast <u>synchronisation</u> <u>of laser source and high-speed scanning devices</u>.
 - All RTD actions should address also the related materials, manufacturability, validation of results for the target applications, and standardisation activities, as appropriate. <u>They should demonstrate strong industrial commitment, be</u> <u>driven by user needs</u> and concrete business cases supported by strong exploitation strategies, and cover the value/supply chainas appropriate.

- Brief project overview
 - Project duration: 42 Months
 - Project budget: ~4.4 Mio€ (~3.6 Mio€ from EC + ~0.8 Mio€ fro SNF)

- Objectives: Applications
 - HIPERDIAS will demonstrate USP laser-based material processing at unprecedented (high-throughput) levels of productivity and precision
 - Three attractive applications shall be investigated to demonstrate the high-throughput laser-based manufacturing:
 - 3D silicon structuring at high-speed: >1mm³/s (~ X10 vs SoA)
 - Precision processing of diamond material : >0.15mm³/s (~ X5-6 vs SoA)
 - Fine cutting of metal for the watch and the medical industry: 500mm/min (~ X2-4 vs SoA)

- Objectives: laser sources and components
 - Flexible high-power CPA-based femtosecond laser sources
 - 50W, 300fs, at 1-2 MHz (system 1: hybrid fiber-bulk amplifer)
 - 200W, 600fs, at 1-2 MHz (system 2: hybrid fiber-bulk amplifier)
 - 500W, 500 fs, 1-2 MHz (system 3: system 1 boosted using a thin-disk multipass amplifier)
 - 1000W, sub-1ps, 1-2 MHz (system 4: system 2 boosted using a thin-disk multipass amplifer)
 - High-power suitable fiber beam delivery (Kagomé fibers)
 - Delivery of >500W (up to 1kW), sub-1ps pulses
 - High-power capable pulse compression gratings
 - >99% diffraction efficiency (per pass) over >5-10 nm spectral bandwidth



- Objectives: material processing and machine integration
 - Fundamental process development
 - Upscaling for high-throughput
 - Demonstration of productivity increase
 - Integration of system and high-power suitable machines for:
 - 3D silicon ablation
 - Diamond processing and fine-cutting of metal

• Overall of the HIPERDIAS project

- Work packages
 - WP1: Definition of User Requirements
 - WP2: Process Development
 - WP3: Ultrafast Laser Front-end development
 - WP4: Photonic components for pre- and post-pulse conditioning
 - WP5: Thin-disk multi-pass Booster
 - WP6: System Development
 - WP7: Demonstrators
 - WP8: Exploitation Planning & Dissemination
 - WP9: Project Management

- Deliverables & Milestones
 - 46 Deliverables
 - 45 Milestones

High throughPut lasER-based processing of Diamond And Silicon (HIPERDIAS)

Marwan Abdou Ahmed USTUTT

UNIVERSITÄT STUTTGART INSTITUT FÜR STRAHLWERKZEUGE

STUTTGART LASER TECHNOLOGIES

- USTUTT is mainly involved in
 - WP2: process development (3D silicon processing in collaboration with Bosch)
 - WP4: Photonic components for pre- and post-pulse conditioning (development of grating compressors in collaboration with AMO)
 - WP5: thin-disk multipass Booster (in collaboration with AMP)
 - WP7: Demonstrators (in collaboration with Bosch and Lasea)
 - WP9: Project coordination (in collaboration with Kite for the project management)
- USTUTT will be leading WP2, 5 and 9

- WP2: Process development
 - TASK 2.2: Fundamental process development fine cutting of metals (M04-M24)
 - In collaboration with C4L
 - TASK 2.4: Upscaling of applications for high throughput (M22-M30)
 - In collaboration with Bosch and Lasea or the 3D Si processing
 - In collaboration with E6 and C4L for the diamond processing and the fine cutting of metal

- WP4: Photonic components for pre- and post-pulse conditioning (grating compressors)
 - TASK 4.1: design of (fully dielectric) grating compressors (M01-M18)
 - Design and Spectroscopic characterization for sub-sequent optimization of gratings
 - TASK 4.2: Development of an optimization of a lithography process for the fabrication of pulse compression gratings (M03-M30)
 - TASK 4.3: Development and optimization of an etching process for the fabrication of optical components (M05-M30)
 - Deliverables:
 - D4.1: Report on simulation of pulse compression gratings with diffraction efficiency>=99% over large spectral bandwidth (5-10 nm) around 1030 nm (M04)

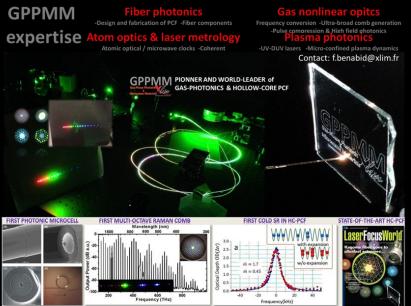
- WP5: Thin-disk multipass Booster
 - TASK 5.1: design of the thin-disk multipass amplifier(M01-M06)
 - TASK 5.2: Assembly & characterization of a Yb:YAG thin-disk multipass amplifier(M06-M22)
 - TASK 5.3: Second and third harmonics generations(M20-M28)
 - TASK 5.4: Integration of the Yb:YAG thin-disk multipass amplifier(M22-M28)
 - TASK 5.5: Demonstration of a 1kW, sub-1ps laser system (M30-M38)
 - Deliverables:
 - D5.1: Design of the multipass amplifier (M06)
 - D5.2: Thin-disk multipass amplifier with 500W, 1MHz, sub-500fs (M22)
 - D5.3: Demonstration of 200W green and 100W UV laser beams at 1MHz and sub-500 fs pulse (M28)
 - D5.4: Thin-disk multipass amplifier with 1000W, >=1MHz, sub-1ps (M38)

- WP7: Demonstrators
 - TASK 7.1: 500W Laser source integration (M18-M24)
 - TASK 7.3: Integration of the optical fibre (M24-M28)
 - TASK 7.4.1: Processes analysis on reference samples (M24-M36)
 - Upgrade of the 500W system in the machine to the 1000W (maximal power available) system on one of the pre-defined application (M30-M42)
 - Deliverables;
 - **D7.8** Report on the performance of the 1000 W demonstrator (M42)

- Objective for the next 6 months:
 - Design of grating compressors
 - Design of thin-disk multipass amplifier
 - Purchase of high-power diode and components (pumping module for thin-disk and Yb:YAG crystals)

Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

XLIM-GPPMM Fetah BENABID



Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

GPPMM: GAS-PHASE PHOTONIC & MICROWAVE MATERIALS

Permanents

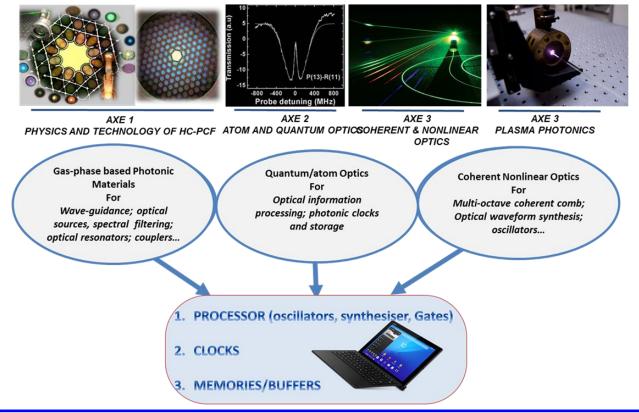
F. Benabid, F. Gerome, J.M. Blondy, C. Restoin, D. Cros Post-docs

B. Debord, E. Elinova, A. Benoit, A. Baz

PhD students

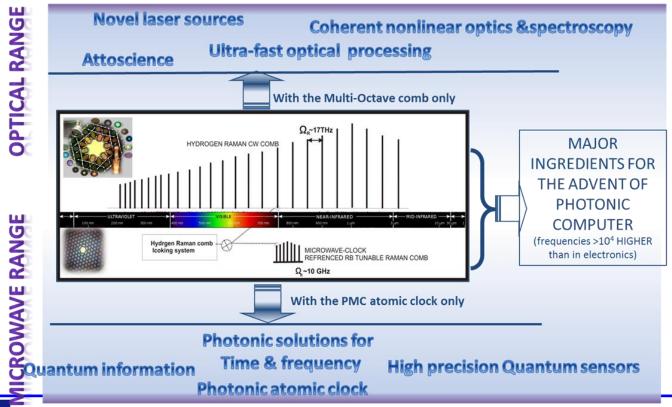
X. Zheng, M. Chafer, M. Adnan, A. Amsanpaly, D. Kergoustin, M. Maure Past members

Y.Y. Wang, C. Fourcade-Dutin, B. Beaudou, T. Bradley, F. Vial, K. Gardone, D. Arestier, M. Dontabactouny. M. Alharbi



GPPMM RESEARCH PROJECT I. AN OUTREACHING OPBJECTIVE:

Anticipating the advent of the "classical" photonic computer by developing photonic components for optical frequency generation, control and processing.



GPPMM RESEARCH PROJECT II. An original approach:

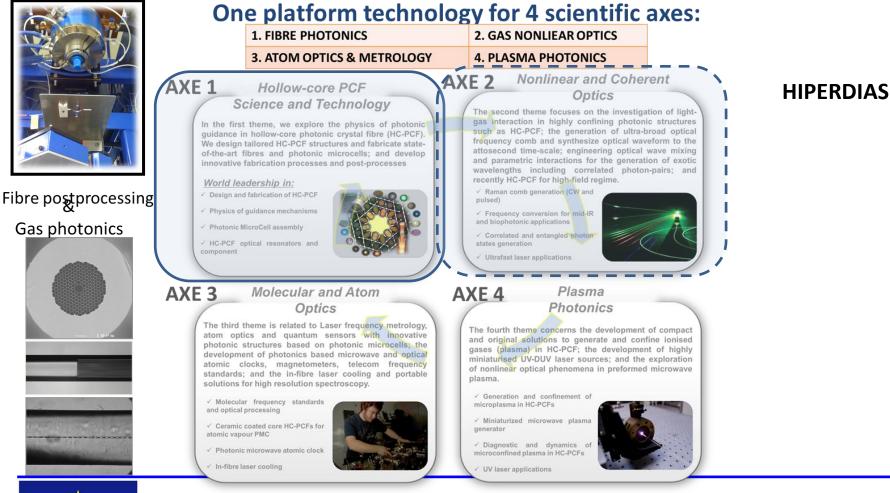
Building an atomic clock referenced photonic synthesiser based on gas-phase materials micro-confined in HC-PCF

GPPMM RESEARCH PROJECT

III. Synergetic cross-disciplinary methodology:

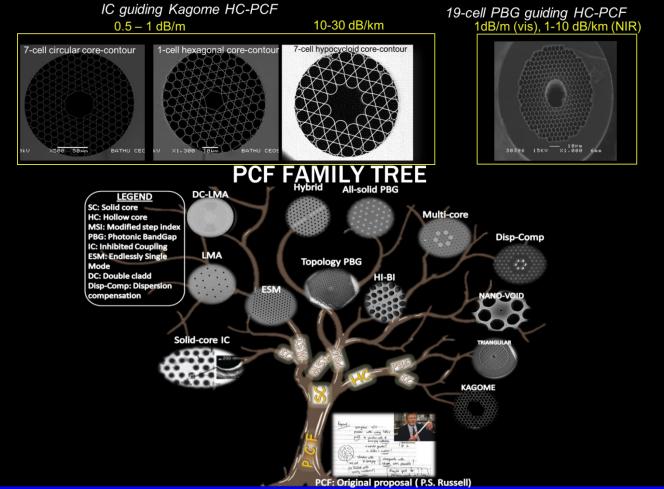
One platform technology for 4 scientific axes:

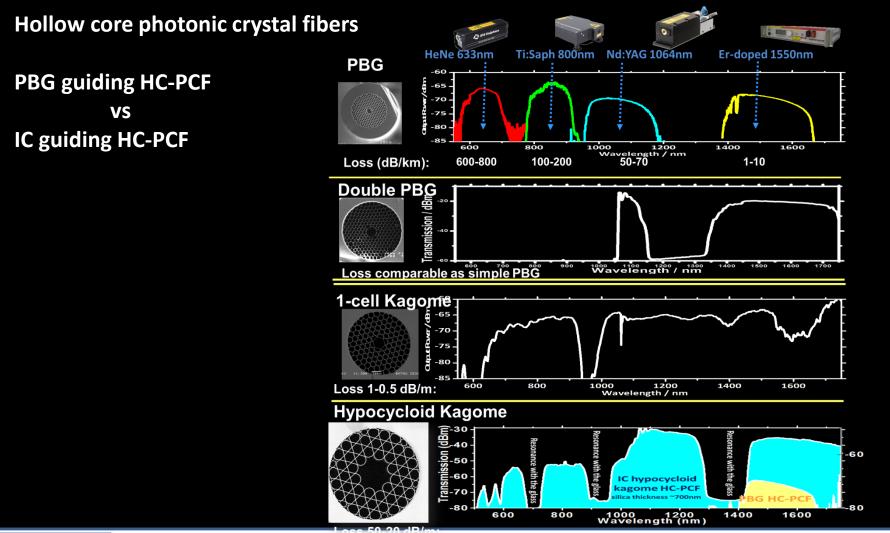
1. FIBRE PHOTONICS	2. GAS NONLIEAR OPTICS
3. ATOM OPTICS & METROLOGY	4. PLASMA PHOTONICS
XE 1 Hollow-core PCF	AXE 2 Nonlinear and Cohere
Science and Technology	Optics
In the first theme, we explore the physics of photonic guidance in hollow-core photonic crystal fibre (HC-PCF). We design tailored HC-PCF structures and fabricate state-of-the-art fibres and photonic microcells; and develop innovative fabrication processes and post-processes. World leadership in: • Design and fabrication of HC-PCF • Physics of guidance mechanisms • Photonic MicroCell assembly • MC-PCF optical resonators and component	 The second theme focuses on the investigation gas interaction in highly confining photonic gues has HC-PCF; the generation of ultra-broc frequency comb and synthesize optical wavefunctions for the generation wavelengths including correlated photon-precently HC-PCF for high-field regime. Raman comb generation (CW and pulsed) Frequency conversion for mid-IR and biophotonic applications Correlated and entangled photon states generation Ultrafast laser applications
XE 3 Molecular and Atom	AXE 4 Plasma
Optics The third theme is related to Laser frequency metrology, atom optics and quantum sensors with innovative photonic structures based on photonic microcells; the development of photonics based microwave and optical atomic clocks, magnetometers, telecom frequency standards; and the in-fibre laser cooling and portable solutions for high resolution spectroscopy.	Photonics The fourth theme concerns the development of and original solutions to generate and confim gases (plasma) in HC-PCF; the development miniaturised UV-DUV laser sources; and the ex of nonlinear optical phenomena in preformed m plasma.
 Molecular frequency standards and optical processing Ceramic coated core HC-PCFs for atomic vapour PMC Photonic microwave atomic clock In-fibre laser cooling 	 Generation and confinement of microplasma in HC-PCFs Miniaturized microwave plasma generator Diagnostic and dynamics of microconfined plasma in HC-PCFs UV laser applications

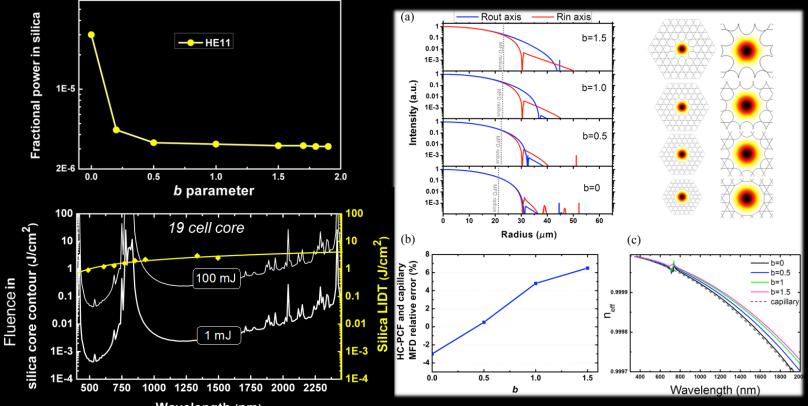


GPPMM RESEARCH PROJECT

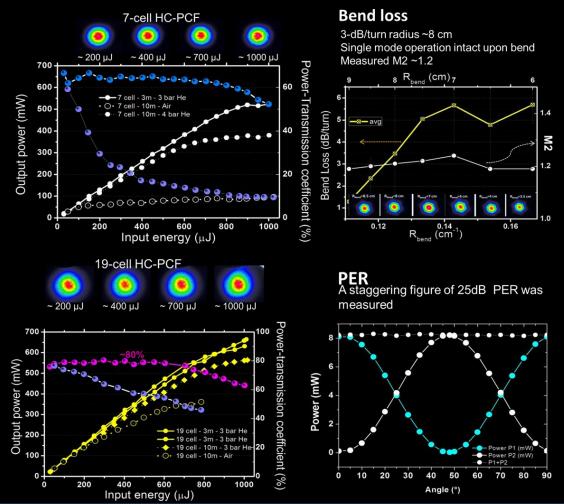
Facilities


² drawing towers III. Synergetic cross-disciplinary methodology:


Hollow core photonic crystal fibers Two guidance mechanisms: Photonic bandgap (PBG) guidance and Inhibited Coupling (IC) guidance


Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

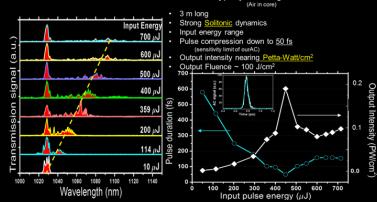
Why IC guiding Kagome HC-PCF for high energy USP laser beam delivery

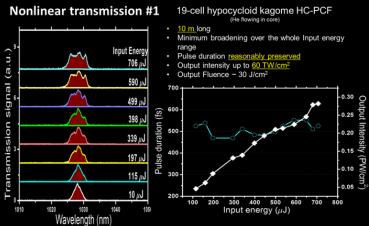


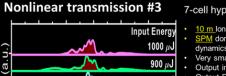
- Mode field diameter is set by the inner radius of the hypocycloid core-contour
- Decrease of power overlap with silica surround to a ppm level

Why IC guiding Kagome HC-PCF for high energy USP laser beam delivery

Why IC guiding Kagome HC-PCF for high energy USP laser beam delivery

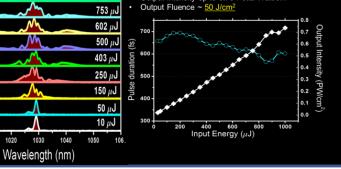

Tuning to your desired optical nonlinearities


- 1. Control parameters: fiber dispersion, effective area, gas choice
- 2. Nonlinear regimes: (i) Ultra-low nonlinearity for « HiFi » USP transportation. (ii) Solitonic self-compression, (iii) SPM broadening


	He-filled	Air-filled	He-filled	Air-filled
	19 cell fiber	19 cell fiber	7 cell fiber	7 cell fiber
Dispersion length, $L_D(m)$	555	577	28	28
Nonlinear length, $L_{NL}(m)$	1.9	0.09	0.9	0.04
Self-focusing critical power, P _{cr} (GW)	2026	9.5	2026	9.5
lonization threshold intensity, $I_{it}(TW. cm^{-2})$	200	40	200	40

19-cell hypocycloid kagome HC-PCF

Nonlinear transmission #2

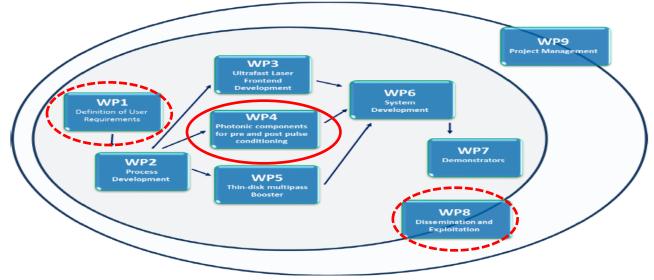


1030

7-cell hypocycloid kagome HC-PCF (He flow in core) <u>10 m</u>long SPM dominates the spectral broadening dynamics Very small compression Output intensity up to 0.75 Petta-Watt/cm²

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

1000

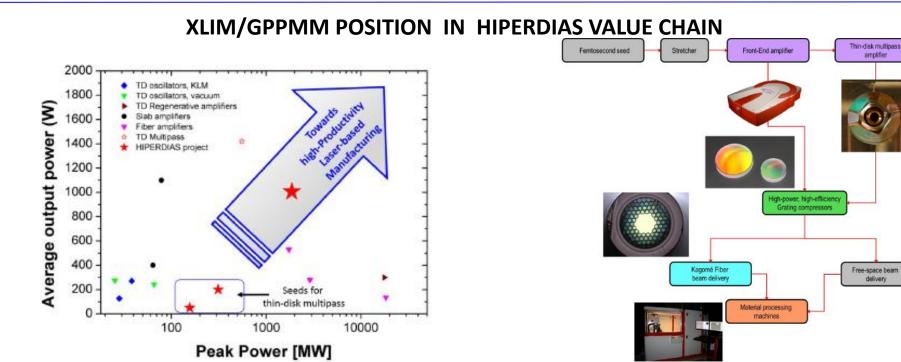

1010

1020

signal

Transmission

XLIM/GPPMM POSITION IN HIPERDIAS VALUE CHAIN



Demand	Chain – Silicon processing	Demand	Chain – Diamond processing
Robert	3D processing of Silicon	E6	Polishing of synthetic diamond
Bosch			
LASEA	Integrated machine & process	C4L	Integrated machine & process
	development		development

GLO/XLIM	Fibre delivery customised to application	
AMO, USTUTT	Pulse Compressors – large area	
AMP	Development of 50W laser (TRL4 to TRL7) and 200W laser (TRL3 to TRL7)	
USTUTT	Development of high power 1000 W thin-disk booster amplifier (TRL 4 to TRL7)	

	7.9 (ABA		
	Parameter	Current State-of-the-Art	HIPERDIAS Target
	Average power/peak power	1.4 kW (lab)/ 588 MW	1 kW / >1 GW
Laser system	Energy	4.7 mJ	1 mJ @ 1 MHz
	Pulse duration	8 ps	<1 ps
Beam delivery	Average power / Peak power	150W/2GW (reported). Note: peak power is not limiting factor in kagome fiber. Challenge is to handle larger avg power	>500W and up to 1kW />1 GW
	Propagation loss	20-50 dB/km (typical)	10-20 dB/km typical (down to 1 dB/km is aimed for
	PER	17 dB (typical)	>20dB

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

amplifier

delivery

XLIM/GPPMM POSITION IN HIPERDIAS VALUE CHAIN Team: F. Benabid, F. Gerome and JM Blondy

	WP	Roles/Major Contribution											Experience																			
	WP 01	definition from the perspective a guided photonics.									. in cry wi va pr	GPPMM is a pioneering research group and a world leader in the field of gas-photonics and hollow-core photonic crystal fibers (HC-PCF). The group has been at forefront with innovative HC-PCF and their implementation in a various applications including the ones relevant to the present project namely ultra-short pulse laser beam delivery and pulse compression.																				
	WP 04	Workpage leader; Designing and fabricating Polarization maintaining HC-PCF for USP beam delivery									Design and fabrication of Hollow-core photonic crystal fibre. Pioneer and leader in Gas photonics.																					
									Т	IME	LINE	FOR	THE MATURATION OF HIPERDIAS TECHNOLOGY																			
		MONTHS	M1 M2	M3	M5	M6 M7	W8	M9 M10	M11	M12 M13	M14 M15	M16	M17 M18	M19	M20 M21	M22	M23	M24 M25	M26 M27	M28	M29	M30 M31	M32	M33	M34 M35	M36	M37	M38	M39	M40	MH 1 M42	
	50W I	aser (D3.1)	TRL4			3	6 TR	E																								
	200W laser (D3.2) TRL3 TRL4 TRL5							TRL	6 TRI	L7																						
	TD An	nplifier (D5.5)	TRL4						ļ		Ļļ		TF	RL5							-	TRL6	; [ļ		TF	RL7
	Gratin	gs (Large)		_					•	TRL5				-												_					TF	RL7
NOLOGIES	HC-PC	F (D4.6)	ļ						ļ	TRL3	ļ		ļļ	TRI	_4		1	TRL5				TRL6	; 	Ļ				TRL	_7			
ğ	PMC r	C module (D4.5)																			TF	RL7										

THANK YOU

AMO GmbH AMICA (Advanced Microelectronic Center Aachen)

Michael Moeller

Gesellschaft für Angewandte Mikro- und Optoelektronik mbH

Managing Director: Univ. Prof. Dr. phil. Heinrich Kurz

- ➢ 57 R&D Cooperation
- 45 Industry Cooperation

- "Research Foundry"
- Operating since 1997 AMICA

(Advanced Microelectronic Center Aachen)

- 40 staff members
- 9 EU-Projects 8 national Projects (BMBF, BMWI & DFG)

Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

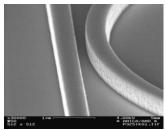
Nanoelectronics

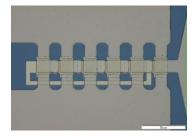
- Graphene electronics and optoelectronics
- SOI FinFet integration for low power CMOS
- Epitaxial gate oxides and metal gate integration
- Nanowire technology

Nanophotonics

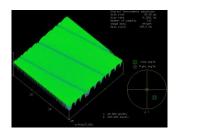
- Integrated silicon photonic systems
- Passive and active device prototype development
- High resolution / high quality fabrication for low-loss waveguides

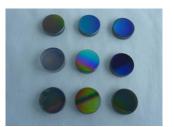
Sensor Technology

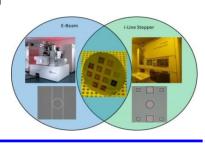

- Plasmonic surfaces for SEVS
- Structures for light management (subwavelength, diffractive, refractive pattern)
- Simulation for adapted designs
- Chips for biochemical agent screening

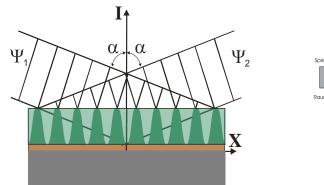

Nanofabrication

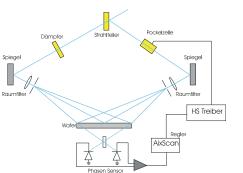
- Advanced lithography techniques (EBL, i-line, UV-NIL, IL)
- Advanced pattern transfer (Mix-Match-Lithography)
- Process & template development
- Si-CMOS technology platform

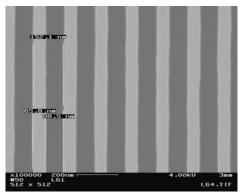




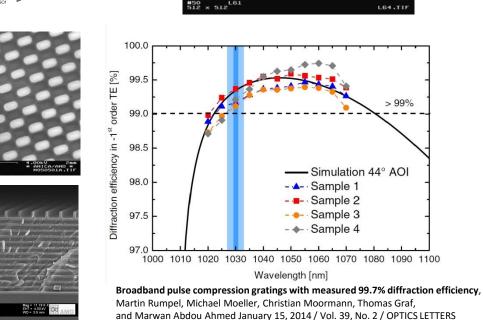


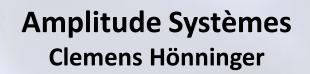



- •WP4: Photonic components for pre- and post-pulse conditioning (Partner: USTUTT, AMP, XLIM, GLO)
- Task 4.2: Development of an optimization of a lithography process for the fabrication of pulse compression gratings
 - Photoresist coating process with maximal uniformity and reproducibility
 - Lithography process modification for large area gratings
- •Task 4.3 Development and optimization of an etch process for the fabrication of optical components
 - Investigation of photomask stability and minimizing thermal abrasion
 - Adressing etch depth and duty cycle uniformity via SEM and AFM
 - Efficient process control



Interference lithography




Grating pitch:

$$p = \frac{\lambda}{2\sin(\alpha)}$$

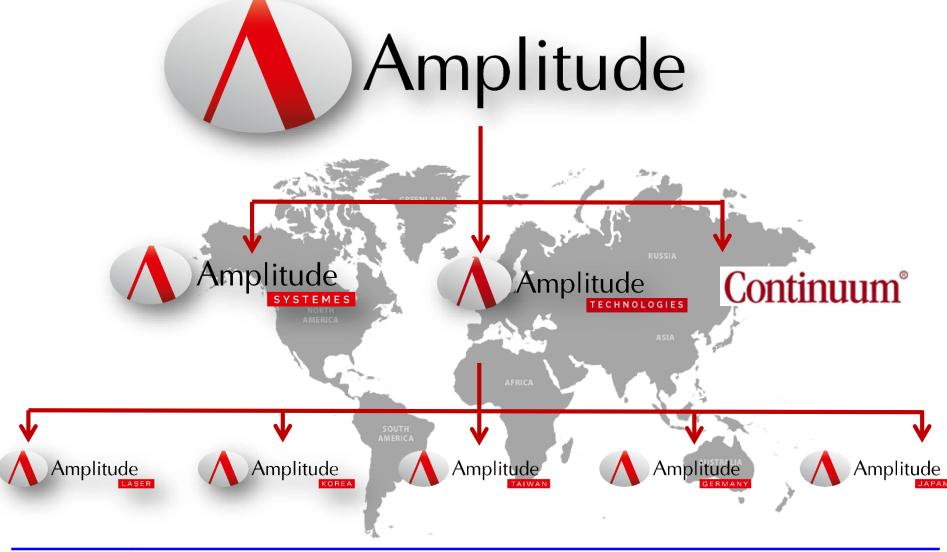
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

nothing but ultrafast

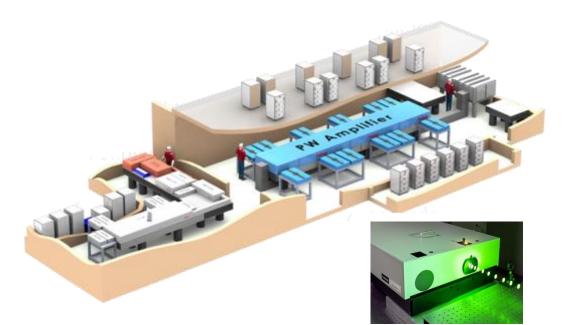
Who we are?

HORIZON 2020

- Largest ultrafast laser company in the world
- More than 300 employees in ultrafast lasers
- Extensive R&D and engineering teams
- Products sold worldwide since 2001
- ISO 9001 and 13485 certified



Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

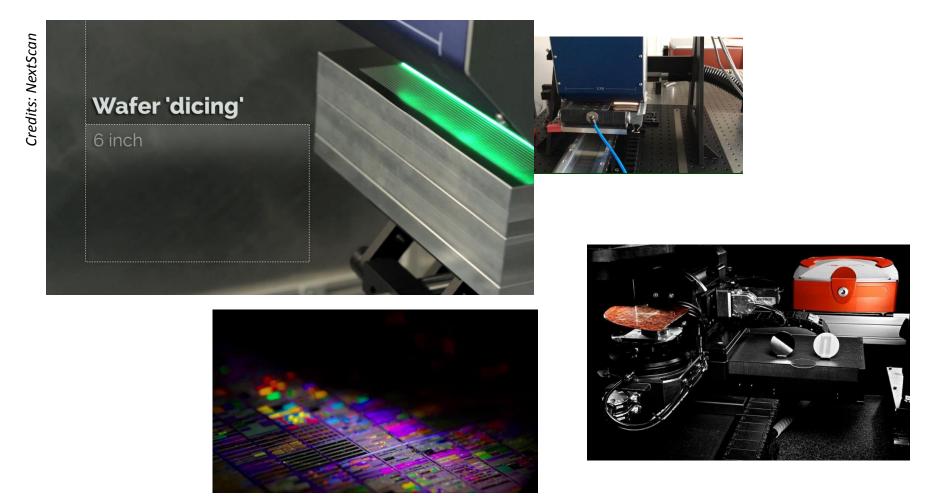


Who are we?

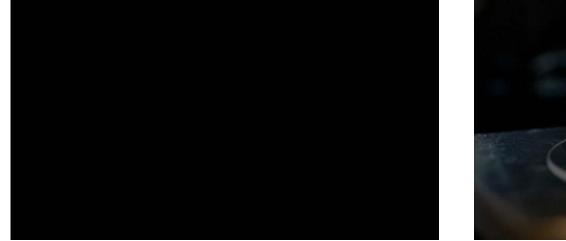
High energy lasers

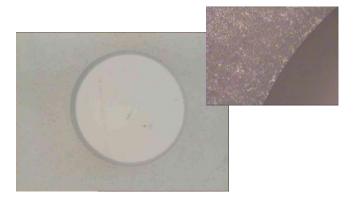
Scientific and medical

Small size, high speed


Industrial and medical

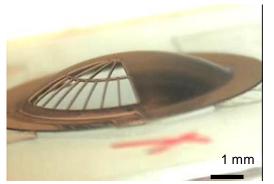
0

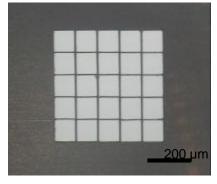

Semiconductor wafer scribing and dicing



Transparent material cutting or marking

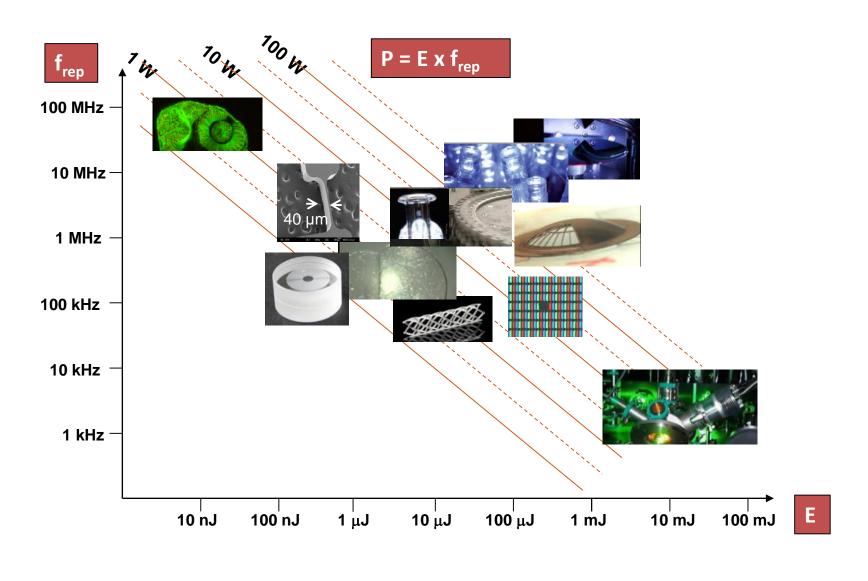
Confidential


Metal engraving and cutting

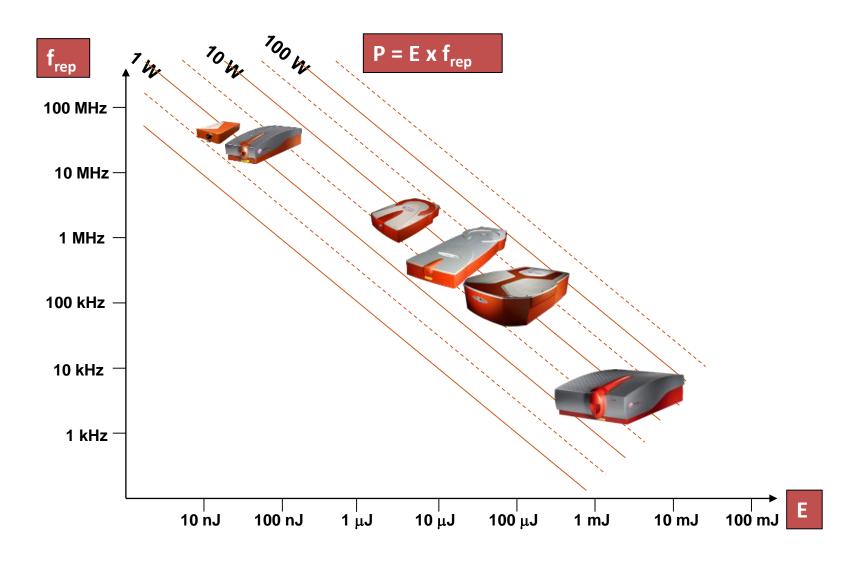

Pioneer in watch industry ultrafast process

Gold - thickness.25µm

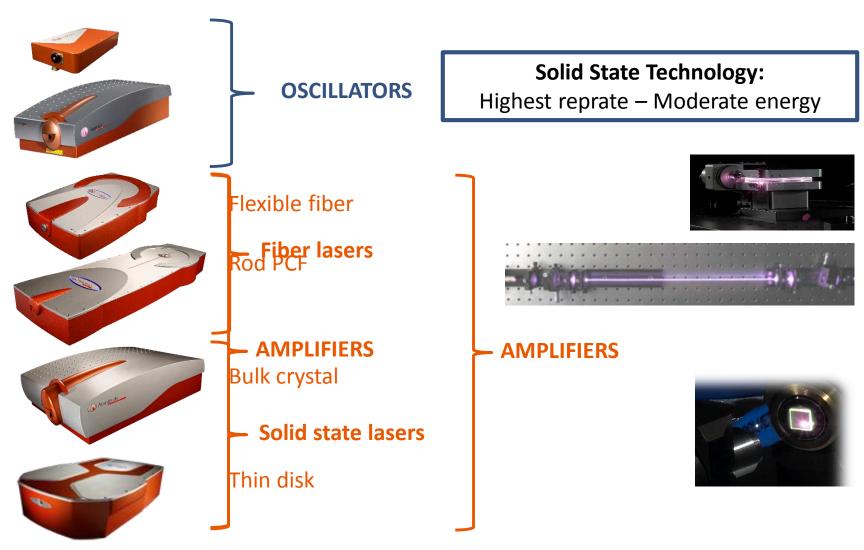
Metal - thickness.50μm Bars width 90μm



Platinum thickness.10μm Bars width 10μm

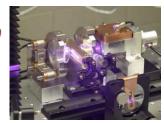


Confidential


Applications & Performance

A wide range of specifications

A wide range of technologies


Our roles in the project

WP 1: Definition of user requirements

• Participation in the definition of specifications and requirements of user interface

WP 3: Ultrafast laser Frontend development

- 50-W, 300-fs laser with >1MHz and spectrally tailored for injecting an Yb:YAG thin disk amplifier (T0+9)
- 200-W, ~500-fs laser at >1MHz (T0+21)
- A high power capable user interface including high speed modulation of the amplified pulse train

WP 4: Photonic components for pre- and post-pulse conditioning

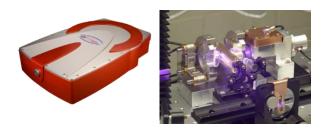
- Compressor gratings (AMO): participation in specifications, testing under industrial conditions
- Kagomé fiber transport (GLO/XLIM): participation in specifications, testing under industrial conditions

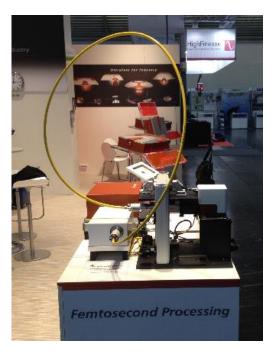
WP 5: Thin-disk multi-pass booster

- Provide seed lasers
- Participate in thin-disk experiments and characterisation
- Participation in high power frequency conversion to green and UV

Confidential

Our roles in the project


WP 6: System development


Participation in interface definition and interface development

- Participation in 500-W demonstrator (fiber-based seed) integration
- Participation in 200-W demonstrator integration (high power seeder)
- Participation in optical fiber (transport) integration
- Participation in upgrade of 200-W demonstrator to 1kW demonstrator

WP 8: Dissemination

Thank you for your attention

Robert Bosch GmbH Andreas Michalowski

Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

45,700 researchers

and developers work on innovations at Bosch worldwide.

CR is employing around

1,400 associates at

11 locations in North America,

Europe, Russia, Asia-Pacific

3% of them work in Corporate Research (CR)

In 2014, Bosch associates filed almost

4,600

patent applications

ø **18**

patents per working day (based on 250 working days)

> This means that Bosch invents something new every 26 minutes (based on a working (day of eight hours)

In 2014, Bosch invested approx. 5 billion € in

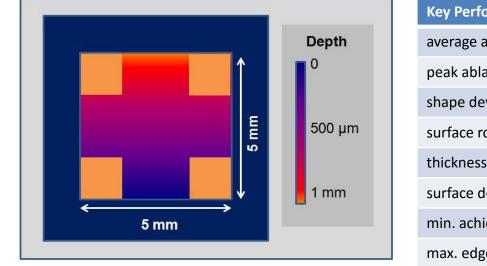
research and development

At CR in 2014, **278 million €**

were invested in research.

Of this, **6%** came from public funding

CR was involved in around **19%** of patent applications


and India

HIPERDIAS TEAM @ Bosch

N 2020

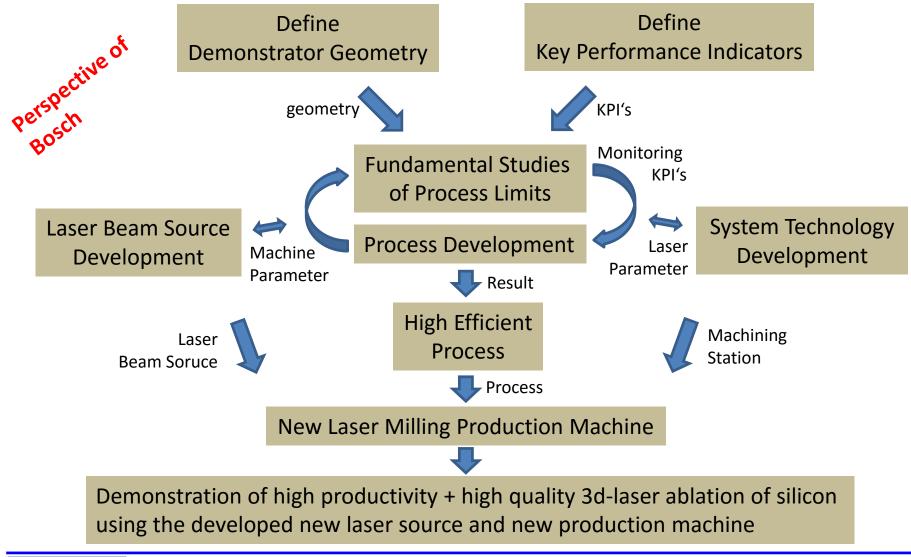
HORIZ

- Andreas Michalowski / andreas.michalowski@de.bosch.com / +49 (0) 711 811 43423
- Mawuli Ametowobla/ <u>mawuli.ametowobla@de.bosch.com</u> / +49 (0) 711 811 34422
- Stephanie Karg/ stephanie Karg/ stephanie Karg/ stephanie</a href="mailto:stephanie"
- Lisa Grad/ tbd / tbd / PHD student starting February 15
- Gerhard Kunz/ gerhard.kunz@de.bosch.com / +49 (0) 711 811 24266 / start September

Key Performance Indicator	Measure	Target
average ablation rate	mm³∕s	≥1
peak ablation rate	mm³∕s	≥3
shape deviation	μm	≤10 (ripple)
surface roughness	μm	≤1
thickness of surface damage	μm	tbd
surface defects	1/mm²	tbd
min. achievable edge radius	μm	as small as possible
max. edge-steepness	degree	≥70

Bosch is participant in WP's

- TASK 1.1: Collection of end-user application specifications (M01-M04, Lead: BOSCH, Participants: C4L, E6)
- TASK 1.2: Process and system specifications (M02-M12, Lead: BOSCH, Participants: All)
- TASK 1.3: Assessment and validation of technical progress (M04-M12, Lead: BOSCH, Participants: C4L, E6)
- TASK 2.1: Fundamental process development 3D Si processing (M04-M24, Lead: BOSCH, Participants, LASEA)
- TASK 2.4: Upscaling of applications for high throughput (M22-M30, Lead: USTUTT, Participants: C4L, BOSCH, LASEA)
- TASK 6.1: Definition of interfaces (M03 M12, Lead: LASEA, Participants: AMP, C4L, BOSCH, E6)
- TASK 6.6: Test and evaluation (M12-M42, Lead: LASEA, Participants: USTUTT, AMP, C4L, BOSCH, E6)
- TASK 7.4.1: Processes analysis on reference samples (M24-M36, Lead: BOSCH, Participants: USTUTT, LASEA)


Bosch is responsible for delivery (report)

- D1.1 End-user application specifications, M04
- D1.3 Prototypes and progress validation, M12
- D2.1 Process limits 3D Si processing, M24
- D2.4 Processing strategies for high power 3D Si processing, M30
- D7.5 Report on the performance of the 500W demonstrator (3D-Si processing), M36

Hiperdias Consortium Kick-Off Meeting – 10th of February 2016

Class 4 Laser Noémie Dury, Stephan von Wolff

*Do not forget to wear protection glasses

HORIZ N 2020 Présentation de Class 4 Laser TRACTER. Class 4 laser Class 4 Laser est Fondée en est Affiliée à 2011 **Reith** laser Notre équipe Par 3 associés est aujourd'hui forte de 16 C4L Systems Nous Une entité a installé plus disposons d'un personnes sœur C4L labo d'essais de 15 System est

fondée en 2012

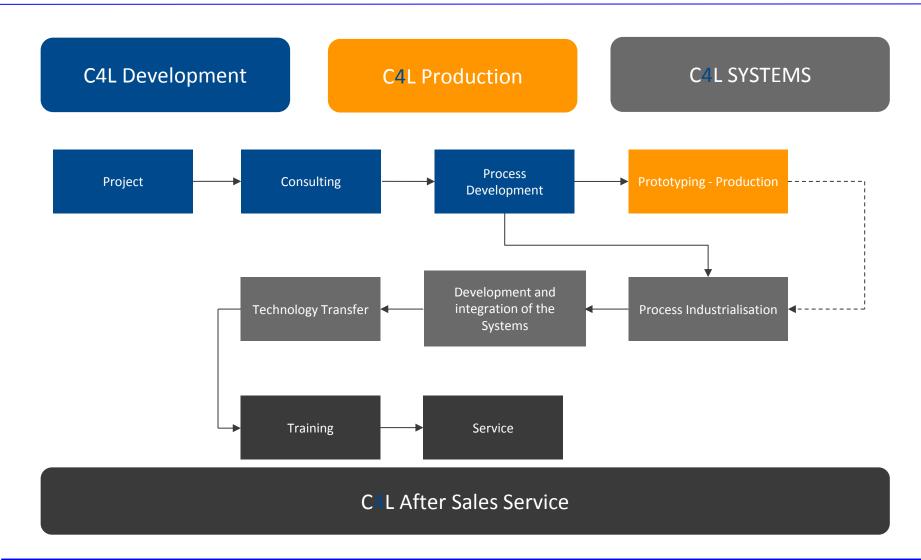
Spécialisés dans les micro applications lasers

Découpe fine, soudage, structuration Perçage à fort ratio...

systèmes dans

le monde

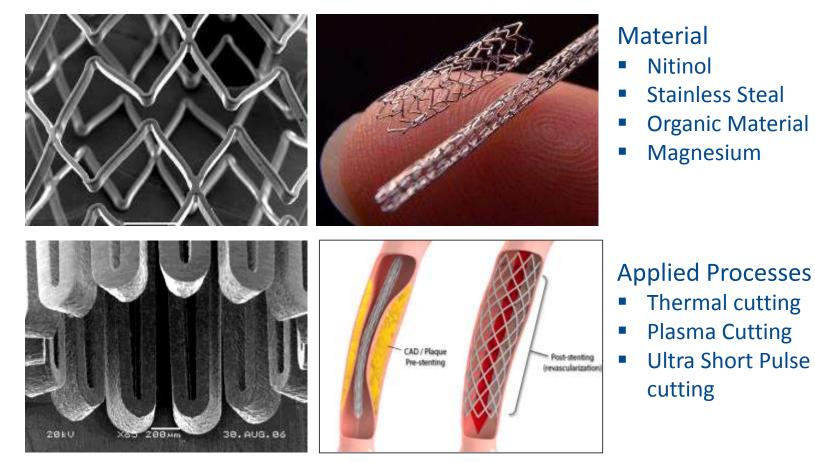
depuis 2012 de procédés, production et fabrication de systèmes lasers


Développement

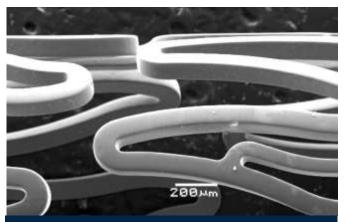
laser et de mesures complet

Toute l'équipe vous accueille à Lyss (Bienne)

Fonctionnement de Class 4 Laser


HORIZ N 2020

Nos marchés et applications



Stent cutting

Intern structuration of stents

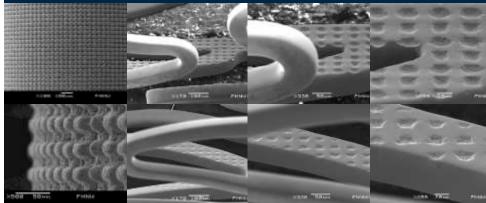
SEM micrograph of stent

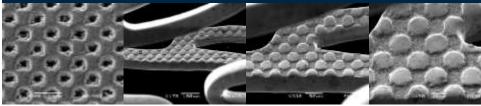
With the courtesy of FHNW

Goals

- Construction of a Structure (Pyramid stump)
- Laser structuring of Embossing tools (Round material HSS-Stahl < 2 mm)
- $\circ~$ Targeted line width and distance of about 1 μm

• System

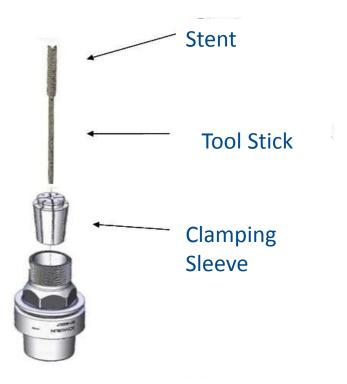

- Laser 355nm Coherent
- Pulselenght ca 20 ns


HORIZ

Intern structuration of stents

Zäpfchen in Linienstruktur

Näpfchen in Schachtstruktur

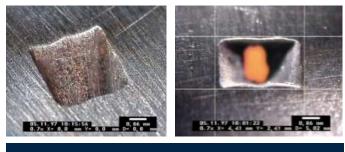


With the courtesy of the FHNW

HORIZ

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687880

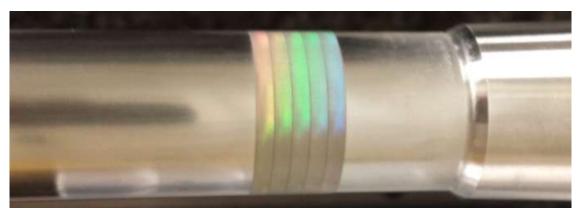
Embossing System: Schematic description

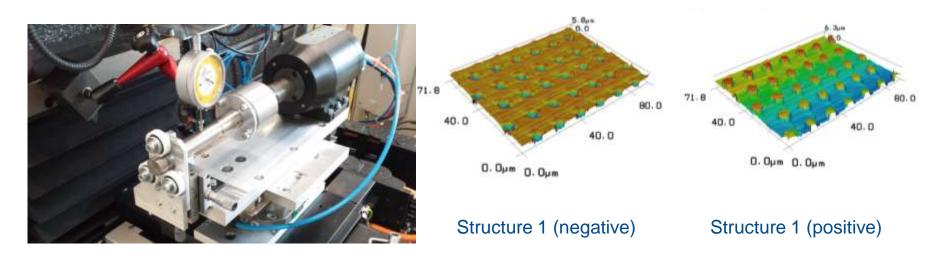

Parameters: 12 J Pulse energy, 0.6 ms Pulse length, 3 s/hole

Parameters: 25 J Pulse energy, 0.8 ms Pulse length, 2 s/hole

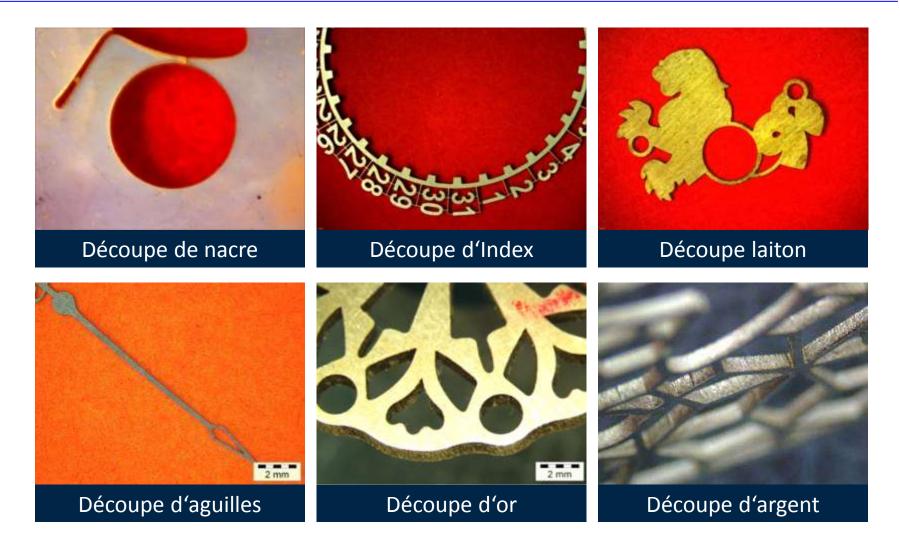
Turbine blades drilling and shaping

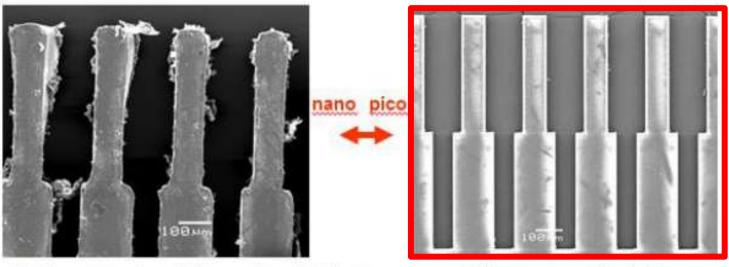
- Material
 - $\,\circ\,$ Ni and Co based alloys
- Specifications
 - Recast, Cracks, geometry
- Shaping of the hole done by USP Laser




Holes shaping

HORIZ N 2020 Example of C4L applications for USP laser


Structuring of mould cores


HORIZ N 2020 C4L in HIPERDIAS: Cutting of watch components

Watch parts cutting

Cantilevers produced with ns pulses (ablation)

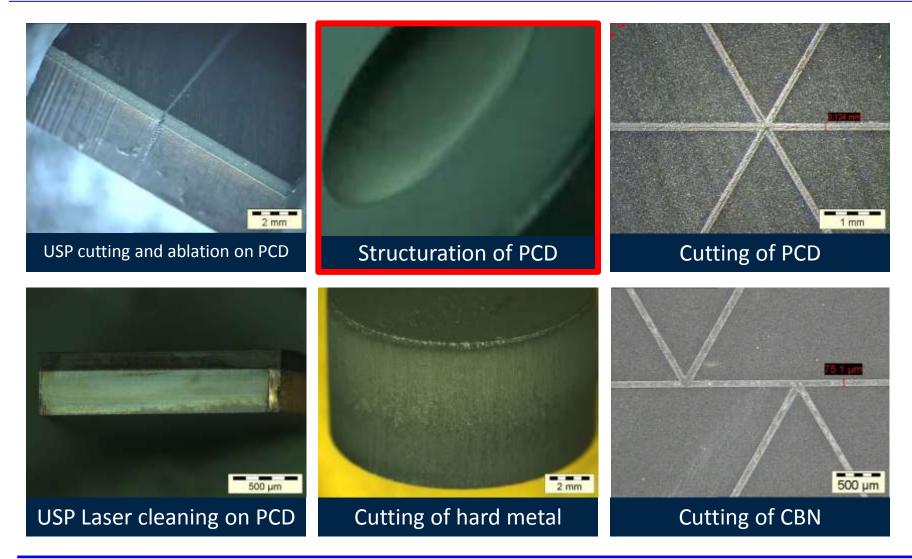
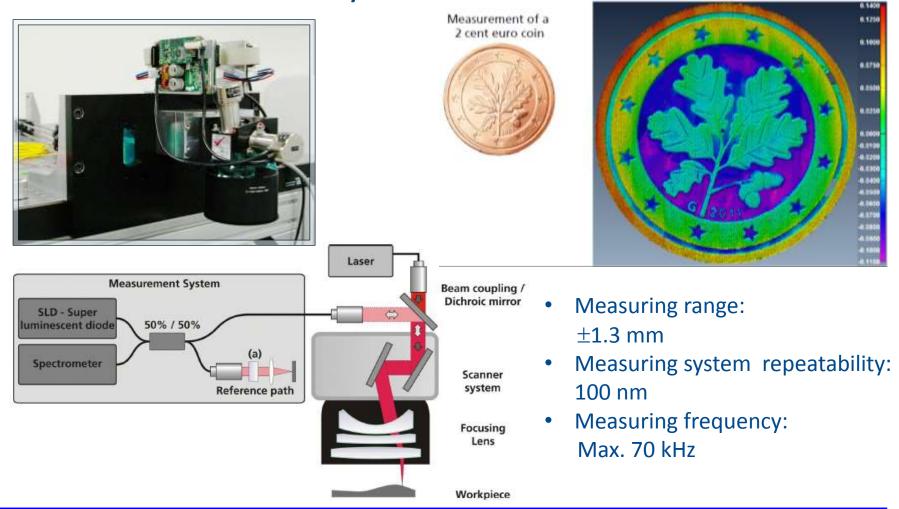

With ps pulses (ablation)

Fig.1.9: Comparison of fine cutting of materials using ps and ns pulses

C4L in HIPERDIAS: machining of PCD

- Strong focus on the vision system development
- 3D measurement system to adapt to the original diamond plate shape
- Rotating optic for watch part cutting
- All in one system


HORIZ

- First trials for process development on a tunable low power ps-fs laser

C4L in HIPERDIAS: System development

3D live measurement system

C4L in HIPERDIAS: System development

Systèmes sur mesure

Intégration toute source laser

Systèmes de Vision variés

Architecture sur mesure

C4L Systems

Logiciel flexible Gestion du procédé, de la production, de la clientèle

15 systèmes dans le monde depuis 3 ans

HORIZ N 2020 C4L in HIPERDIAS: Working Packages

WP	Roles/Major Contribution	Experience
WP 01	Support of end users, input for fine cutting and ablation process from the laser process sight.	Process development for the watch and tooling industry applied in customers project and public projects.
WP 02	Task leader for fine cutting and highly involved in the diamond ablation task. Process development and trials tasks. (ps laser and eventually fs)	Process development for the watch and tooling industry applied in customers project and public projects.
WP 06	WP leader, building of the system	System development for own customers for 3D ablation and fine cutting. (watch and tooling industries)

Demand	Chain – Silicon processing Demand Chain – Diamond processing			
Robert	3D processing of Silicon		E6	Polishing of synthetic diamond
Bosch				
LASEA	Integrated machine & process development		C4L	Integrated machine & process development

GLO/XLIM	Fibre delivery customised to application	
AMO, USTUTT	Pulse Compressors – large area	
AMP	Development of 50W laser (TRL4 to TRL7) and 200W laser (TRL3 to TRL7)	
USTUTT	Development of high power 1000 W thin-disk booster amplifier (TRL 4 to TRL7)	

- Noémie Dury: Project manager <u>noemie.dury@clas4laser.ch</u>
- Stephan Von Wolff: Engineer Systems & Process <u>stephan.vonwolff@class4laser.ch</u>
- Reiner Witte: Head of systems division
- William Scalbert (E6): Engineer Process development

HIPERDIAS

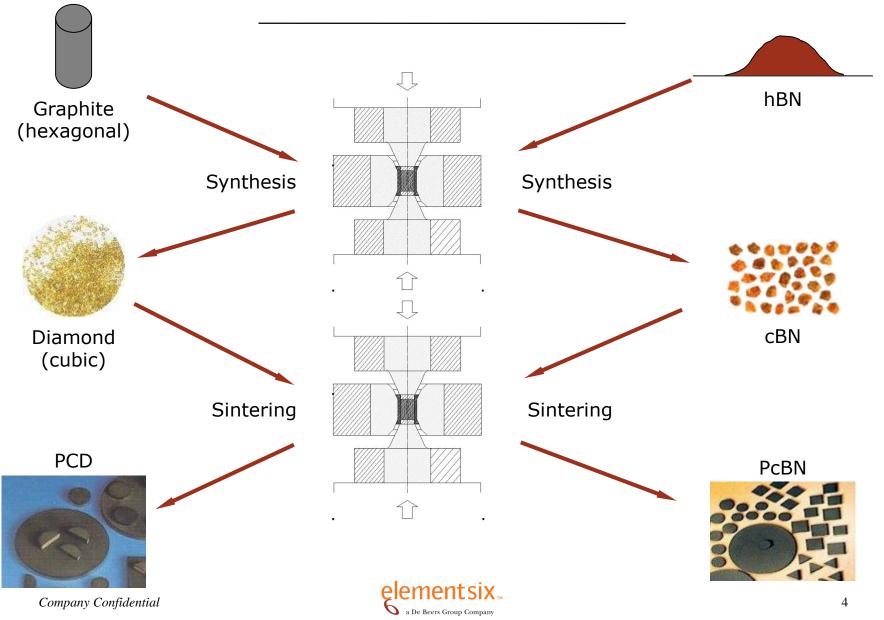
Opening Meeting

10/02/2016

Company Confidential

William Scalbert

ELEMENT SIX


ELEMENT SIX PROFILE

- World's leading supplier of industrial Diamond¹ supermaterials
- International company with head office registered in Luxembourg
- Processing and manufacturing facilities in Germany, Ireland, UK, Netherlands, Sweden, South Africa and China
- 2500 employees worldwide and sales of ~\$500 million
- Over 50 years experience of delivering innovative Diamond solutions
- Manufactures Diamond from carbon using high pressure high temperature (HPHT) synthesis and chemical vapour deposition (CVD)
- Developed 30,000 unique products for our 10,000 global customers

Note: 1. The term Diamond encompasses Diamond and Diamond like materials such as cubic boron nitride (CBN) or silicon carbide Diamond (SCD)

ELEMENT SIX PROFILE

ELEMENT SIX PROFILE

One HPHT Press

One of Element Six Cubic Press Hall

- High pressure generated through the concentration of hydraulic force on a small area
- **High Pressure**: 55,000 atmospheres (tower of 5000 family-sized saloon cars stacked on a jar of peanut butter)
- **High Temperature**: 1500°C > melting point of steel

Company Confidential

ELEMENT SIX DIVISIONS

Oil & Gas

Global leader in polycrystalline Diamond cutters for **Oil & Gas** drilling.

Advanced Materials

Precision grinding, Precision Machining, and Construction & Extraction applications of Diamond.

Hard Materials

Carbide tools for the Road Restoration, Mining and Wear parts markets.

Global leader in synthesis of higher quality Diamond exploiting the many other extreme properties beyond hardness.

Company Confidential

ELEMENT SIX EXPECTATIONS

ELEMENT SIX MANUFACTURING CHAIN LINE

🛇 a De Beers Group Company

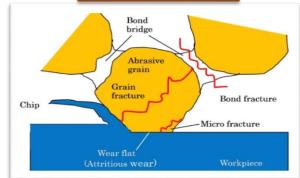
ELEMENT SIX POLISHING PROCESS

Low processing

elementsix

a De Beers Group Company

yield

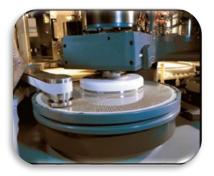

- Mechanical polishing process is extremely challenging in E6.
- Issues due to process itself:
 - Costly (60% of total processing cost)
 - Long process (6/10 hours to process 5 discs)
 - Grain size/shape/angle distribution
 - Temperature control (dry process)
 - Manual
- Issue due to high variation in incoming material

A—Polishing Wheel

- B—Pneumatic Head
- C—Cooling Pipes
- D—Copper Head

Polishing process

Material to be polished


Company Confidential

MECHANICAL POLISHING PROCESS ALTERNATIVES

Element Six has been trying for years to develop alternative processes to replace mechanical polishing process without any real success... yet!

- Via internal projects
- Chemical/mechanical polishing

- Lapping machine
- Acid slurry mixed with diamond grit
- Dissolve top surface

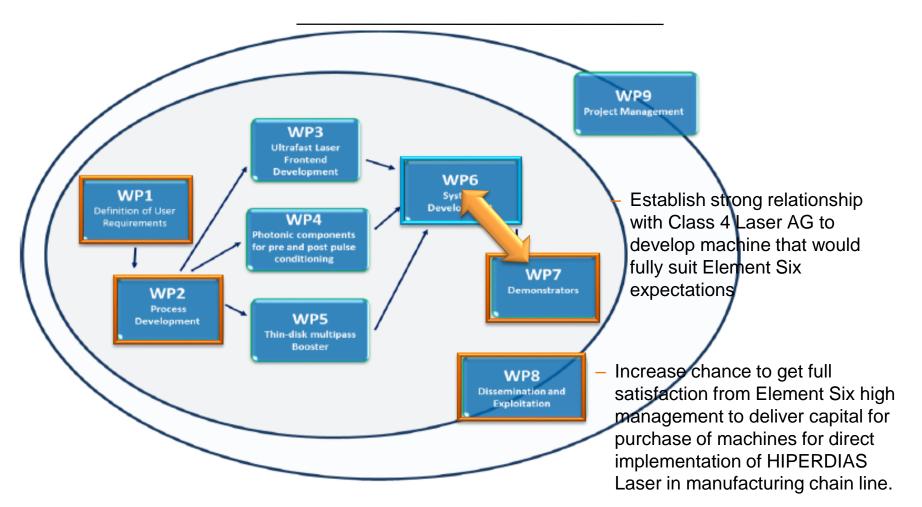
- Via European projects
- DIPLAT
- Machining of an engineered polishing surface
- Every parameter accurately controlled

- HIPERDIAS

. . . .

SCOPE OF HIPERDIAS PROJECT FOR ELEMENT SIX

Main scope


- Replacement of mechanical polishing machines by Laser machines to Laser ablate PCD up to a mirror surface finish:
 - Low processing cost
 - Fast processing (???)
 - Cold ablation -> no thermal effect
 - Laser spot machining with controlled Laser parameters
 - Automatic process
 - Deal with various topographies thanks to top surface scanner/personalised program
- In Ireland, 55 polishing machines (new 20 polishing machines purchased last year)
 DEVELOPMENT OF TOP SURFACE SCANNER IN COLLABORATION

Higher processing yield

ELEMENT SIX INVOLVEMENT

ELEMENT SIX WORK PACKAGES

THANK YOU