

1st Consortium Meeting

Cité de la Photonique, 11 Av. de Canteranne, Bâtiment MEROPA, F-33600 PESSAC Bordeaux, France

ATTENDEES				
Organisation:	Name :			
Universitaet of Stuttgart	Marwan Abdou-Ahmed			
Robert Bosch GMBH	Andreas Mickalowski			
Element Six Limited	William Scalbert			
	Michael King			
Amplitude Systemes SSA	Clemens Hoenninger			
	Joshika Akhil			
	Birgit Weichelt			
	Martin Delaigue			
	Franck Morin			
Universite De Limoges	Fetah Benabid			
Gesellschaft Fur Angewandte Mikro	Michael Moller			
und Optoelekttronik Mit				
Beschrankterhaftung AMO GMBH				
Glophotonics	Jerome Alibert			
Class 4 Laser Professionals AG (C4L)	Noemie Drury			
	Stephan Von Wolff			
Laser Engineering Applications SA	David Bruneel			
	Jose Antonio Ramos de Campos			
Kite Innovation Europe Limited	Deborah Trabut			
	Julie Devall			

Contents

1.	Hiperdias Agenda (as occurred on the day)	
2.	Hiperdias Kick-Off Meeting Minutes – 10 th of February 2016	
	Welcome and Overview of agenda – Marwan Abdou Ahmed	
	Partner Introductions – All	
	Overview of the Project – Marwan Abdou Ahmed	
	BOSCH - Andreas Michaelowski	
	E6 - William Scalbert & Michael King	
	> C4L – Noemie Drury	
	AMP – Clemens Hoenninger	
	> USTUTT – Marwan Abdou Ahmed	
	> XLIM – Fetah Benabid	
	> AMO – Michael Moeller	
	> GLO- Jerome Alibert	
	> LASEA – David Bruneel	
	> KITE – Julie Devall	
	Scientific Technology Board – Clemens Hoenninger	
	KITE – Deborah Trabut	
	Management Board – Marwan Abdou Ahmed	
3.	Hiperdias Kick-Off Meeting Key Actions and Decisions	
4.	Hiperdias - Deliverables (Next 6 months)	
5.	Hiperdias – Tasks (Next 6 Months)	
6.	Hiperdias – Group Photo	
7.	Appendix i – Original Agenda	

	Arrival	
1	Welcome & Overview of Agenda	Marwan Abdou-Ahmed
2	Introductions	All
3	Overall Presentation of the Project	Marwan Abdou-Ahmed
4	Bosch	Andreas Michalowski
5	E6	William Scalbert & Michael King
6	USTUTT	Marwan Abdou-Ahmed
7	AMP	Clemens Hoenninger
8	XLIM	Fetah Benabid
9	AMO	Michael Moller
10	Glo	Jerome Alibert
11	C4L	Noemie Drury
12	LASEA	David Bruneel & Jose Antonio Ramos
		de Campos
13	Kite - Project Management	Julie Devall
14	Science Technology Transfer Board	
15	Finances	Deborah Trabut
16	Management Board	Marwan Abdou-Ahmed
17	Site Tour	Clemens Hoenninger

1. Hiperdias Agenda (as occurred on the day)

2. Hiperdias Kick-off Meeting Minutes – 10th February 2016

LOCATION	Cité de la Photonique, 11 Av. de Canteranne, Bâtiment MEROPA, F-33600 PESSAC Bordeaux, France Start time : 9 :00 CET
RECORDER	Julie Devall

	1. Welcome and Overview of the Agenda – Marwan Abdou Ahmed		Actions
			Decisions
1.0	MAA opened the consortium and welcomed all partners		
1.1	MAA thanked all partners for their excellent work contributed so far		
1.2	MAA will be coordinating the project with strong support from Kite Innovation Europe Ltd		
1.3	MAA gave a brief overview of the Agenda		

	2. Partner Introductions – All	Risks	Actions
		Issues	Decisions
2.0	MAA invited all partners from around the table to introduce themselves		

	2 Quartieur of the Project Martuan Abdau Abmed	Risks	Actions
	3. Overview of the Project - Marwan Abdou Ahmed	Issues	Decisions
3.0	MAA reminds the consortium of what Hiperdias stands for:		
5.0	"High throughPut LasER processing of DIAmond and Silicon"		
3.1	MAA explains to the Consortium how Hiperdias answered the call: Approximately 80% of the key words in the call were addressed representing a strong project proposal. The proposal clearly explained the current state of the art and how Hiperdias will transcend this	Action JD to check info relating to Hipo contribution ar	erdias industry nd ensure JC
	for each principal component. As part of the call it is a prerequisite to demonstrate how the project is driven by strong industrial needs and the Hiperdias provided a strong justification for this We are 10 partners (2 institutes and 8 industry partners) representing a strong industry output	(Kite's Dissemi Manager respo WP8) has this i for website cor	onsible for nformation
3.2	The project is 42 months duration		
3.3	The overall budget is 4.4 million euros including the 3.6 million funded by EU		
	The three applications are diamond processing , 3D silicon and fine metal cutting The objectives of the project We try to be above state of the art and an example in terms of 3D Silicon Processing 6 times faster and to increase the yield in diamond processing For fine metal cutting 500 millimetre, 2 to four times higher than state of the art 1 st System - fibre based Laser part Delivered by amplitude systemes		
	2 nd System – 500w We want to avoid loss of power 46 deliverables We want to address CPA Amplifiers		

	4. Bosch - Andreas Michalowski		Actions
			Decisions
4.0	Organisation Profile:		

European Commission

Horizon 2020 European Union funding for Research & Innovation

[
	AM explains that the Hiperdias Project from BOSCH's part will be managed by the "Corporate	
	Research Division". The Corporate Research Division is active in 11 locations in North America,	
	Europe, Russia, Asia-Pacific and India.	
4.1	Main activities:	
	Bosch have a multitude of different interests but in terms of this particular project Silicon	
	processing will be the main focus	
4.2	Role in the project:	
	Bosch is an End User	
	WP Leader of WP1, and leading on particular tasks within WP2, WP6 and WP7	
4.3	Tasks and Deliverables:	Action
	T1.1: Collection of end-user application specifications (M01-M04, Lead: BOSCH, Participants: C4L,	JD to check with AM how
	E6)	end-user quality acceptance
	T1.2: Process and system specifications (M02-M12, Lead: BOSCH, Participants: All)	criteria will be defined and
	T1.3: Assessment and validation of technical progress (M04-M12, Lead: BOSCH, Participants: C4L,	the "format" and frequency
	E6)	of quality checks. How will
	T2.1: Fundamental process development 3D Si processing (M04-M24, Lead: BOSCH, Participants,	Bosch know when all quality
	LASEA)	criteria have been satisfied?
	T2.4: Upscaling of applications for high throughput (M22-M30, Lead: USTUTT, Participants: C4L,	How will this be reported to
	BOSCH, LASEA)	rest of the consortium?
	T6.1: Definition of interfaces (M03 – M12, Lead: LASEA, Participants: AMP, C4L, BOSCH, E6) TASK	
	6.6: Test and evaluation (M12-M42, Lead: LASEA, Participants: USTUTT, AMP, C4L, BOSCH, E6)	
	T7.4.1: Processes analysis on reference samples (M24-M36, Lead: BOSCH, Participants: USTUTT,	
	LASEA)	
	Bosch is responsible for delivery (report)	
	D1.1 End-user application specifications, M04	
	D1.3 Prototypes and progress validation, M12	
	D2.1 Process limits 3D Si processing, M24	
	D2.4 Processing strategies for high power 3D Si processing, M30	
	D7.5 Report on the performance of the 500W demonstrator (3D-Si processing), M36	
4.4	MAIN STATEHOLDER EXPECTATION	
	To ensure that a laser is produced that can process Silicon as defined by the End User	
	Specifications	
4.5	Other Comments:	Action
	Bosch have assigned 5 members of staff which will be dedicated to the Hiperdias Project.	JD to check with AM who
	Bosch are particularly concerned with ensuring that the demonstrator geometry and key	should be included in future
	performance indicators are appropriately defined at the start so that the demonstrator is	teleconference calls. Ensure
	delivered within expected quality criteria as specified in the End User Application Specifications.	that contact details are
	Bosch will be communicating with C4L and E6 especially at Month 1 to Month 4	recorded

	E EG William Scalbort and Mishael King	Risks	Actions Decisions
	5. E6 - William Scalbert and Michael King	Issues	
5.0	Organisation Profile:		
	WS explains that Element 6 are part of the De Beers Group a world leading supplier of industrial Diamond super materials		
	They have processing and manufacturing facilities in Germany, Ireland, UK, Netherlands,		
	Sweden, South Africa and China.		
	MK explains that E6 are a materials company		
5.1	Main Activities:		
	Polycrystalline Diamond cutters for Oil & Gas drilling.		
	Precision grinding, Precision Machining, and Construction & Extraction applications of Diamond		
	Carbide tools for the Road Restoration, Mining and Wear parts markets.		
	Global leader in synthesis of higher quality Diamond exploiting the many other extreme		
	properties beyond hardness		
5.2	Role in the project:		
	E6 are an End User		
	E6 are particularly interested in seeing the solution to a "technical problem" solved, in particular		
	the mechanical processing of synthetic diamond.		
	9 147		

Horizon 2020 European Union funding for Research & Innovation

5.3	Tasks and Deliverables:	Action
	E6 will be a main participant on:	JD to check with WS how
	T1.1: Collection of end-user application specifications (M01-M04, Lead: BOSCH, Participants: C4L, E6)	end-user quality acceptance criteria will be defined and
	T1.2: Process and system specifications (M02-M12, Lead: BOSCH, Participants: All)	the "format" and frequency
	T2.3: Fundamental process development diamond ablation (Task Lead, Participant C4L)	of quality checks. How will E6 know when all quality criteria have been satisfied? How will this be reported to rest of the consortium?
5.4	MAIN STATEHOLDER EXPECTATION	
	To eliminate manual processing in diamond production	
5.5	Other comments:	
	E6 will work closely with C4L during this process especially to map the surface of the disc	
	E6 are looking for a mirror finish but this is a difficult process. The mechanical process has issues,	
	it's costly and time consuming and there are different grain size in the wheel. Temperature can also be a problem.	
	E6 are approaching the project from the perspective of trying to solve a technical problem.	

		Risks	Actions
	6. C4L - Noemie Drury	Issues	Decisions
6.0	Organisation Profile		
	ND explains that C4L is 4 years old with 16 employees based in Switzerland		
	C4L takes a "holistic" approach working with clients right through the design and delivery process		
	The core business is laser processing which includes micro-drilling, micro-cutting, welding and		
	structuring		
	C4L work with very different and varied markets from the medical industry, aerospace, the watch		
	industry, automotive and electronics. In terms of Hiperdias the work C4L do around "Tooling" will		
	be of specific importance		
6.1	Main Activities		
	Working with the client using a "holistic approach" from design to delivery		
6.2	Role in the Project		
6.3	Tasks and Deliverables		
	C4L is WP Lead on:		
	T6.1 Definition of Interfaces		
	T6.2 Definition of Laser and Optics sizes; optics specifications (including fibre)		
	T6.6 Test and Evaluation		
	C4L are also WP Participants on:		
	T1.1 Collection of end-user application specifications		
	T1.3 Assessment and validation of technical progress		
	T1.4 Interface requirements		
	T2. 3 Fundamental process development diamond ablation		
	T2.4 Upscaling of applications for high throughput		
6.4	MAIN STAKEHOLDER EXPECTATIONS		
6.5	Other Comments		

	7 AMD Clomons Hooppinger	Risks Issues	Actions
	7. AMP – Clemens Hoenninger		Decisions
7.0	Organisation Profile Amplitude Systemes are the largest ultrafast laser company in the world There are over 300 employees It is ISO 9001 and 13485 certified		
7.1	Main Activities		

Horizon 2020 European Union funding for Research & Innovation

	Providing high energy lasers for both the scientific and medical industries	
	The technology is used for semiconductor wafer scribing and dicing, transparent material cutting	
	or marking and metal engraving and cutting	
7.2	Role in the Project	
	Amplitude Systemes are the provider of the laser technology which will be created during the	
	project	
7.3	Tasks and Deliverables	
	WP1: Definition of user requirements	
	Participation in the definition of specifications and requirements of user interface	
	WP3: Ultrafast laser Frontend development	
	50-W, 300-fs laser with >1MHz and spectrally tailored for injecting an Yb:YAG thin disk amplifier	
	(T0+9)	
	200-W, ~500-fs laser at >1MHz (T)+21)	
	A high power capable use interface including high speed modulation of the amplified pulse train	
	WP4: Photonic components for pre- and post-pulse conditioning	
	Compressor gratings (AMO): participation in specifications, testing under industrial conditions	
	Kagome fibre transport (GLO/XLIM): participation in specifications, testing under industrial	
	conditions	
	WP5: Thin-disk multi-pass booster	
	Provide seed lasers	
	Participate in think-disk experiments and characterisation	
	Participation in high power frequency conversion to green and UV	
	WP6: system development	
	Participation in interface definition and interface development	
	WP7: Demonstrators	
	Participation in 500-W demonstrator (fibre-based seed) integration	
	Participation in 200-W demonstrator integration (high power seeder)	
	Participation in optical fibre (transport) integration	
	Participation in upgrade of 200-W demonstrator to 1kW demonstrator	
	WP8 Dissemination	
	Participant in all dissemination activities	
7.4	MAIN STAKEHOLDER EXPECTATIONS	
	To ensure the development of the laser is created to end-user specifications	
7.5	Other Comments	

	8. USTUTT – Marwan Abdou Ahmed	Risks	Actions
	8. OSTOTT – Marwan Abdou Annied	Issues	Decisions
8.0	Organisation Profile		
8.1	Main Activities		
8.2	Role in the Project		
8.3	Tasks and Deliverables		
8.4	MAIN STAKEHOLDER EXPECTATIONS		
8.5	Other Comments		

	9. XLIM – Fetah Bendabid	Risks	Actions
	9. ALIM – Felan Bendabid	Issues	Decisions
9.0	Organisation Profile		
	Based at the University of Bath, UK and the University of Limoges		
	Pioneer and world leader of gas-photonics and hollow core PCF		
	There are 5 core staff members with 3 Post-Doctorate members and 6 PhD Students		
9.1	Main Activities		

Horizon 2020 European Union funding for Research & Innovation

	Development of photonic components for optical frequency generation, control and processing Expertise include: Fibre photonics, the design and fabrication of PCF – Fibre components Atom optics and laser metrology – atomic optical / microwave clocks – coherent, Gas nonlinear optics – frequency conversion – Utra-broad comb generation – pulse compression	
	and high field photonics Plasma photonics – UV-DUV lasers – Micro-confined plasma dynamics	
9.2	Role in the Project	
	Providers of the fibre which will be customised to specific specifications as stated by the end-uers	
9.3	Tasks and Deliverables	
	Will have input on:	
	WP1 Definition of User Requirements	
	Work Package Leaders of WP4 and participants of;	
	T4.4 Fabrication and characterization of photonic microcell (PMC) module	
	T4.5 Design/Fabrication of photonic microcell module with integrated coupling optics	
9.4	MAIN STAKEHOLDER EXPECTATIONS	
	To design and fabricate polarization for maintaining HC-PCF for USP beam delivery	
9.5	Other Comments	
	XLIM will use IC guiding Kagome HC-PCF for high energy USP laser beam delivery	

	10. AMO – Michael Moeller	Risks Issues	Actions Decisions
10.0	Organisation Profile		
	AMO has been operating since 1997		
	It has 40 staff members		
	It is currently involved in 9 EU Projects and 8 National Projects		
10.1	Main Activities		
	Nanoelectronics		
	Nanophotonics		
	Sensor Technology		
	Nanofabrication		
10.2	Role in the Project		
10.3	Tasks and Deliverables		
10.4	MAIN STAKEHOLDER EXPECTATIONS		
10.5	Other Comments		

	11. GLO – Jerome Alibert	Risks	Actions
	11. GLO – Jerôme Allbert	Issues	Decisions
11.0	Organisation Profile		
11.1	Main Activities		
11.2	Role in the Project		
11.3	Tasks and Deliverables		
11.4	MAIN STAKEHOLDER EXPECTATIONS		
11.5	Other Comments		

12. LASEA – David Bruneel	Risks	Actions
12. LASLA – David Bruneen	Issues	Decisions
12.0 Organisation Profile		

Horizon 2020 European Union funding for Research & Innovation

	LASEA is a highly qualified team of 41 members with 28 engineers They offer Laser Machine manufacturing and Laser equipment installation and maintenance	
12.1	Main Activities	
	Laser cutting including cutting of metal, sapphire, polymer, mother of pearl, metal and glass	
12.2	Role in the Project	
12.3	Tasks and Deliverables	
	WP1: collection of all partners' requirements, end-users specifications	
	WP2: Process development: high throuhput 3D silicon processing, diamond processing and fine cutting materials	
	WP6: System development: definition of system's interfaces and features to integrate for proof of concept	
	WP1 – Definition of user requirements	
	Task 1.4 (Leader) : Interfaces requirements : Laser, Scanner, motion, opto-mechanics, software communication	
	WP2 – Process development	
	Task 2.1: 3D Si processing : Influence on system design	
	Task 2.4 : upscaling 3D Si processing with BOSCH and USTUTT	
	WP6 – System development	
	Task 6.1 (Leader): Interfaces definition : protocols and connections to control : scanner (XYZ), axes (XYZ), laser, joystick, vacuum system, fume extraction	
	Task 6.2: Defining optics specifications, laser beam delivery, systems mechanical limitations	
	Task 6.3: Design and development of software interfaces, control combining laser, CNC and	
	Scanner.	
	Task 6.4: Design of the system and build up : Integration of XYZ axes, scanner, camera, fume extractor, sample vacuum system	
	Task 6.5: Integration of beam delivery optics, scanner, laser, control units. Functionality checks.	
	Task 6.6 (Leader): Evaluation of the system's properties	
	 use of own low power laser, 	
	 characterisation of positioning tolerances of scanner and XYZ 	
	Characterisation of laser-matter interaction	
	Guarantee of the sample vacuum fixture system, fume extraction system	
12.4	MAIN STAKEHOLDER EXPECTATIONS	
12.5	Other Comments	

	13. Kite – Julie Devall	Risks	Actions
	13. Kite – Julie Devali	Issues	Decisions
13.0	Organisation Profile		
	Formed in 2006 with offices in Scotland and Yorkshire		
	13 members of staff		
	Over 10 years' experience of working with FP7 and now Horizon 2020		
13.1	Main Activities		
	Proposal Writing		
	Project Management Services		
	Exploitation Planning and Commercialisation Services		
	Strategy Development and Implementation Services		
	We have approximately "40" FP7 and Horizon2020 projects under management in our current		
	portfolio		
	Sectors include; Health, ICT, Energy, Nanotechnologies, Environmental Science, Security and		
	Transport		
13.2	Role in the Project		
	To ensure that the project management and dissemination activities are executed correctly and		
	satisfy the EU Commission contributing to project success		

Horizon 2020 European Union funding for Research & Innovation

13.3	Tasks a	nd Deliverables
	T8.1	Web site
	T8.2	Dissemination
	T8.5	Management of Intellectual Property
	T9.1	Management and coordination of the project
	Т9.2	Financial management of the project
	т9.3	Management of ethical and gender related issues
	т9.4	Establishment of consortium bodies, and of consortium meetings
	Т9.5	Management of the consolidation of technical and financial reports
	т9.6	Monitoring and progress chasing and submission of deliverables and milestones
	T8.3	Exploitation
	т8.4	Intellectual property and supply chain
	т8.6	Training
13.4	MAIN S	TAKEHOLDER EXPECTATIONS
13.5	Other C	omments
	<u> </u>	

	14 Calentifia Taskuslam, Daard	Risks	Actions
	14. Scientific Technology Board	Issues	Decisions
14.0	Discussion takes place in regards to the Size and the Design as it is necessary to work out the		
	dimensions		
	Size		
	MAA recommends 70 x 40 mm single substrates		
	MAA 50 times 30?		
	If		
	CH		
	MM – 100 x 25		
	MM 100 x 100 is easier and we would deliver it uncut		
	Difficult to protect the surface of the grating Go on the small size which is already prepared.		
	CH 25 =		
	Which sizes of grating will be required		
	Design		
	MM remaining dust particles on the surface is the issue		
	Design Parameters		
	Line Density - 1600 / 40 lines per millimetre		
	Angle of incident- 51.4		
	• Separation Angle –14 degrees		
	• Spectral Bandwidth – 10,30		
	Application for the Laser - 50W mentioned by CH		
	The 50W laser will come to Stuttgart and it will be boosted to 500W		
	Will this laser be laser be ready for micro machining? AM		
	MAA – We can plan for the Laser to be at Bosch		
	The 500W Laser		
	What will be the repetition rate of the 500W Laser?		
	CH – Can we a		
	The 200w at month 22 – it will go to C4L first		
	ND -		
14.1			
14.2			

14.3	
14.4	
14.5	

	15. Kite Finances – Deborah Trabut		Actions
	15. Kite Finances – Deboran Trabut	lssues	Decisions
15.0 •	There are 3 Periodic Reports		
•	1 date		
•	2 date		
•	3 date		
•	On month 9 there is a deliverable which will act as a dry run to go through with partners. We would treat this as if it was a real periodic report		
•	Month 36 there is a financial audit which is an internal audit to which each individual organisation		
•	Explains the Project pre-financing breakdown		
•	The EU has given us approximately 1.5 Million Euros, from that they will retain what they call the "guarantee fund" The total amount transferrable will be the total amount minus the Guarentee Fund		
•	MAA asked the question in regards to the bank details.		
•	If you were to leave the project at any time the EU will ask you how much money you have spent up to that point. If you have spent more than what the EU allows (up to that point) you will be asked to pay that back		
•	During the duration of the project the EU will not give you more than 90% of the maximum grant amount		
•	We also have to subtract the pre-financing amount and any Amount received		
•	The final payment corresponds to the 10% retention that they keep and the guarantee fund and that would be your maximum final payment		
•	The guarantee fund is taken from the pre-financing and the 10% retention is taken from the total grant amount.		
•	ND asks who she would claim to.		
•	MAA we would need to keep an eye on the whole of the budget.		
•	AM – Deviations – the EU will ask for an explanation		
•	MAA – sometimes you use less than what you have asked for which will need an explanation.		
•	DT –		
•	CH – 1 st Periodic Report at month 12		
•	MAA – explains the timings of the period Reporting		
•	Budget Transfers – Any budget is not necessarily final and can be transferred to any other partner. The procedure is to represent to the consortium and they will make the decision. A case will made and a consortium will decide.		
•	The Reporting - every 6 months there will be technical progress and management of resources		
•	The periodic report - you have 60 days to provide all information		
•	DT stated that each organisations personal accounts are not going to be validated by DT but instead DT will state whether certain financial information will be questioned by the EU. She will act as an advisory on such matters.		
•	All rules and regulations are in the Grant agreement which contains the Core, Annex 1 – DoA (Part A & B) and other annexes		
•	There is also the Consortium Agreement		
•	There is also guidance on the Participant Portal		

Horizon 2020 European Union funding for Research & Innovation

	Direct Costs / indirect Costs	
	Direct costs / man eet costs Direct costs are anything directly linked to the project. Under H2020 it is a flat rate of 25%	
	Eligible Costs must be incurred during the project	
	MAA – The Kick off Meeting people have paid money already. These are seen as	
	"exceptions".	
	MAA – PO has asked MAA to Brussels to represent the project with Photonic 21. To represent	
	Hiperdias	
	The commission can do an in-pronto audit at any time.	
	Eligible costs include:	
	Personal costs	
	Travel costs and related subsistence allowances	
	Deductible VAT is not an eligible cost	
	Certificate on the financial statements	
	A 'certificate on the financial statements' (CFS) will have to be submitted at the end of the	
	project if the request for total contribution is EUR 325 000 or more.	
	It only effects USTUTT, AMP, AMO, BOSCH and LASEA	
	Timesheets – recommends that these are accurately kept.	
	Consortium Meetings are (travel) Under RTD.	
	IP generated during the project and directly related to the project is an eligible cost.	
	You can be audited on the project up to 5 years after the project. Keep track of all documents.	
	All financial statements need to be done in Euros.	
	Kite for example deal in pounds so therefore we have to use a single currency exchange rate.	
	Average of the daily exchange rate. DT will provide this exchange rate to partners	
	Have you a recommendation on the frequency and format? timesheets	
	Each institutional needs to do provide in accordance with their organisation timesheets.	
	DT – needs financial contact details of individual members dealing with the finances at each	
	institution	
15.1		
15.2		
15.3		
15.4		
15.5		

	16. Management Board Meeting	Risks Issues	Actions Decisions
16.0 •	Structure of the Consortium Technology Transfer - MAA will need to check with Professor Graff. – it may be difficult for him to attend.	135025	Decisions
• • •	Who else should be named for the Transfer Board Communication – Monthly TC recommended by Coordinator JD to do doodle poll to ascertain the monthly TC MAA - the interdependencies of the project are better serviced by monthly TC's. DT –		
•	 Next Consortium Meeting – 6 month basis September next month first two weeks of September Bosch - to clarify details 		

Horizon 2020 European Union funding for Research & Innovation

	- JD to send out the doodle poll	
16.1		
16.2		
16.3		
16.4		
16.5		

	17. Site Tour of Amplitude Systemes		Actions
			Decisions
	Clemens Hoenninger gave a site tour of the facilities of Amplitude Systemes which included a tour of the laboratories where the lasers were situated. Clemens Hoenninger allowed members of the consortium to see where the Hiperdias laser will be housed whilst it is being developed		

END OF CONSORTIUM EVENT

