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Kurzfassung in deutscher Sprache

Der Erfolg von Festkorperlasersystemen basiert in hohem Mafe auf der Tatsache,
dass deren Strahlung bei einer Wellenlinge im Bereich um 1 pm kostengiinstig, effizi-
ent und vor allem hoch flexibel mit optischen Glasfasern transportiert werden kann.
Diese lassen sich in Robotersysteme integrieren und die Laserstrahlung gelangt ohne
storende Fokusverschiebungen, wie sie in Freistrahl-Strahlfithrungssystemen auftre-
ten, zum Werkstiick.

Die rasche Zunahme der Strahlqualitit und der Ausgangsleistung von Scheiben- und
Faserlasersystemen sind die treibenden Krifte bei der Entwicklung von neuen opti-
schen Fasern. Die Leistungsskalierbarkeit von passiven faserbasierten Strahlfithrungs-
systemen sowie von aktiven Fasern wird durch das Einsetzen von mehreren nicht-
linearen Effekte innerhalb des Wellenleitermaterials, hauptsichlich der stimulierten
Brillouin-Strenung und der stimulierten Raman-Streuung, begrenzt. Die Leistungs-
schwelle fiir diese Effekte nimmt mit zunehmender Faserlidnge ab, so dass selbst die
in aktiven Fasern erzeugte Laserstrahlung nicht {iber beliebige Strecken mit passiven
Fasern transportiert werden.

Daher wurden im Rahmen dieser Arbeit unterschiedliche Spezialfaserkonzepte mit
dem Ziel untersucht die effektive Modenfeldfliche zu maximieren ohne dabei die
Strahlqualitit zu mindern. Dafiir wurden Finite-Elemente-Rechnungen zur Simulati-
on und Optimierung der Faserstrukturen verwendet. Mit Hilfe von Eigenwertberech-
nungen wurde die Modenstruktur der Fasern simuliert und unter Verwendung von
sogenannten ,Perfectly-Matched Layers® sowie komplexwertiger Berechnung konnten
die Verluste dieser Eigenmoden bestimmt werden. Mit Hilfe der Methode des ,,Aqui-
valenten Brechungsindexes® wurde der Einfluss von Biegungen der Faser auf die Mo-
den simuliert. Dariiber hinaus wurde die Herstellung der Spezialfasern unterstiitzt
und eigens produzierte sowie zugekaufte Fasern wurden experimentell untersucht.

Zur Charakterisierung der Fasern wurden Messpléitze aufgebaut. Hierbei stand die

15



16 Kurzfassung in deutscher Sprache

Untersuchung der Ddmpfung, der Strahlqualitdt und der Biegeempfindlichkeit der
Fasern im Vordergrund. Zur Verbesserung der experimentellen Abldufe und zur Er-
héhung der Reproduzierbarkeit wurde die Justage der Freistrahl-zu-Faserkopplung
mit Hilfe von computergesteuerten, hochprizisen Achsen automatisiert.

Ein Ansatz um die Modenfeldfliche A.g zu erhohen besteht darin, mehrere kohé-
rent gekoppelte Kerne in einem gemeinsamen Mantel anzuordnen um dadurch die
Leistung zu verteilen und die Belastbarkeit der Faser zu erhchen. Dieser Ansatz
ist als Mehrkernfaser (Multicore Fiber MCF) bekannt. Im Rahmen dieser Arbeit
wurde erstmals eine einmodige MCF demonstriert. Die Faser besteht aus 19 Ger-
manium dotierten Kernen, welche in einem Mantel aus Quarzglas eingebettet sind.
Die Kopplung der Kerne resultiert in einem Modenfeld von A.g = 465 nm? bei einer
Wellenldnge von 1pm. Die Fasermode besitzt eine nahezu gaukformige Feldvertei-
lung und kann wie eine (einmodige) Standard-Stufenindexfaser eingesetzt und mit
Stufenindexfasern verspleiftt werden. Die Biegeempfindlichkeit der 19-Kernfaser ist
jedoch grenzwertig, so dass die Faser vorsichtig gehandhabt werden muss um schar-
fe Biegungen zu vermeiden. Durch das Spleifien dieser Faser an einen Faserlaser
sowie das Vermeiden von Biegeradien kleiner als 0,2m konnte erfolgreich ein Hoch-
leistungstest mit 356 W (begrenzt durch die verfiighare Grundmode-Laserleistung)
durchgefiihrt werden.

Eine Maoglichkeit grofse Modenfelder bei verhéltnisméfig niedriger Biegeempfind-
lichkeit zu realisieren sind Fasern welche eine photonische Bandliicke verwenden,
um die Laserstrahlung zu fithren. Diese Arbeit konzentriert sich dabei auf soge-
nannte Bragg-Fasern (BF). Diese bestehen aus einem (grofien) Kern welcher von
konzentrischen Ringen mit alternierend hoher und niedriger Brechzahl umgeben ist,
dhnlich einem dielektrischen Spiegel. Diese Vielschichtstrukturen wurden mit einem
innerhalb dieser Arbeit entwickeltem Verfahren optimiert. Darauf basierend wur-
den Bragg-Fasern beschafft und experimentell untersucht. Die optimierten BF sind
nahezu frei von Biegeverlusten und zeigen im Vergleich mit Stufenindexfasern eine
deutlich geringere Biege-induzierte Verformung des Modenfeldes.

Eine weitere Art von Spezialfaser nutzt ein Verlustmanagement um eine hohe Strahl-
qualitit bei groffem Kerndurchmesser und dementsprechend hohen Modenfeldfli-
chen zu erreichen. Diese ,Leakage Channel* Fasern (LCF) bestehen aus einem Fa-
serkern, welcher von einzelnen niedrigbrechenden Elementen, zum Beispiel Luftlo-

chern, umgeben ist. Zwischen diesen Liéchern kann das Licht jedoch entweichen.
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Unter Beriicksichtigung der Abhéngigkeit der Kopplung zweier Moden von Real -
und Imaginérteilen der effektiven Brechungsindizes dieser Moden kann eine Moden-
kopplung iiber das Verlustmanagement minimiert werden.

Zunichst wurde eine einfache LCF mit 5 Léchern untersucht. Die Messungen erga-
ben eine effektive Modenfeldfliiche von Az = 383 1m? und eine Beugungsmafzahl
von M? = M; = 1,1 nach der Faser. Daraufhin wurde der Einfluss von zusiitzlichen
mikrostrukturierten Schichten, also weiteren Schichten mit Lochern, untersucht. Wie
sich herausstellte ist eine Erh6hung der Anzahl der Schichten nicht ausreichend, um
die Biegeverluste wesentlich zu reduzieren. Jedoch kénnen die Verlustunterschiede
zwischen der Grundmode und den Moden héherer Ordnung dadurch vergrofert wer-
den. Eine Optimierung im Hinblick auf die Biegeempfindlichkeit konnte durch die
Anderung der Lochdurchmesser von kleineren Léchern in der inneren mikrostruktu-
rierten Schicht zu gréferen Lochern in einer zweiten Schicht erreicht werden.
Zusitzlich wurde die Verwendung von Resonanzen mit Mantelmoden der LCF be-
trachtet. Durch eine sorgfiltige Anpassung des Faserdurchmessers konnen im Kern
gefithrte Moden héherer Ordnung durch Angleichung der effektiven Brechungsindi-
zes resonant mit Mantelmoden gekoppelt werden. Dies fithrt zu einer Erh6hung der
Verluste dieser Moden und kann somit zu einer Verbesserung des Verlustmanage-
ments genutzt werden.

Das optimierte LCF Design besitzt eine Grundmode mit einem Modenfeldfliche
von 708 pm? und kann wie eine Standard Einmodenfaser verwendet werden um beu-
gungsbegrenzte Hochleistungslaserstrahlung flexibel zu transportieren und dies bei
einer gemessenen Dampfung der Grundmode von weniger als 6 dB/km. Noch grofe-
re Modenflichen kénnen erreicht werden, wenn mehr als eine Mode effektiv gefiihrt
werden darf. Fiir den Einsatz mit aktuellen Hochleistungsfaserlasern, welche neben
der Fundamentalmode oft einen kleinen Leistungsanteil in der LP;; Mode zeigen,
wurde daher eine spezielle LCF entwickelt. Diese fithrt beide Moden effizient, die
Modenfeldfliche der Fundamentalmode betriigt in diesem Fall A.g = 11872,

Neben den umfassenden Studien (asymptotisch) einmodiger Fasern wurde auch der
Transport von Grundmodelaserstrahlung in vielmodigen Fasern analysiert. Basie-
rend auf der Annahme, dass eine hohe Differenz der effektiven Brechungsindizes
Aneg (2.B. > 107%) eine Modenkopplung verhindert, wurden mehrere Stufenindexfa-
sern und eine Multikernfaser mit 7 Kernen charakterisiert. Eine Stufenindexfaser mit

30 pm Kerndurchmesser und einer numerischen Apertur (NA) von 0,06 wurde be-
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sonders intensiv untersucht. Ein mit geeigneten Optiken sorgfiltig in diese Faser
eingekoppelter Gaufsstrahl konnte unter Beibehaltung einer hohen Strahlqualitit in
der Faser transportiert werden. Eine Beugungsmafzahl von M? = 1,12 wurde nach
der Faser (mit 10m Linge) gemessen. Die Beugungsmakzahl verschlechterte sich
selbst bei starker Biegung oder Bewegung der Faser nicht merklich. Riickschneide-
Messungen zeigten, dass sich die Beugungsmafzahl auch nicht mit der Faserlinge
andert. Die NA der Faser ist mit 0,06 noch hoch genug, um Biegeverluste bei Bie-
gungen mit R > 0, 1m zu unterdriicken. Die Aufgrund der Biegung hervorgerufene
Verringerung und Verformung des Modenfelds wurde jedoch mit Hilfe eines speziell
dafiir ausgelegten Experiments gemessen und mit Simulationsergebnissen verglichen.
Ein Hochleistungstest einer dhnlichen Faser resultierte in einer Beugungsmafzahl
von M? = 1,35 nach einer 100m langen Faser bei einer Leistung von 800 W.

Im Vergleich mit einer Multikernfaser hat sich in Bezug auf Vielmodenfasern kein
Vorteil des Multikernkonzepts gezeigt. Bei einmodigen Fasern kénnen mit Hilfe
des Multikernkonzeptes jedoch geringere effektive NAs reproduzierbar hergestellt
und daher grofere Modenfelder erzeugt werden als mit Standard-Stufenindexfasern.
Bragg-Fasern sind insbesondere bei Anwendungen, bei denen eine sehr hohe Robust-
heit gegeniiber scharfen Biegungen gefordert wird, z.B. bei chirurgischen Eingriffen
in der Medizin, von Vorteil. Wie sich zeigte, konnen qualitativ hochwertige Vielm-
odenfasern in gewissen Grenzen auch zum Transport von Grundmodelaserstrahlung
verwendet werden. Weiteres Potential besteht insbesondere bei den ,Leakage Chan-
nel“ Fasern. Sowohl bei aktiven als auch passiven Fasern konnen durch dieses Kon-

zept grokere Modenfeldflichen erreicht werden.
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The tremendous impact of solid-state lasers on material processing and the rapid
increase of the beam quality as well as the output power are driving forces in the
development of new optical fibers and high-power suitable beam delivery systems.
The power scalability of such systems over significant distances is limited by the
onset of several nonlinear effects inside the waveguide material, mainly stimulated
Brillouin scattering and stimulated Raman scattering.

Within this work, finite element calculations are used to simulate and optimize dif-
ferent fiber structures. Moreover, the production of some of the optimized fibers
is considered and experiments to measure their attenuation, mode-structure and
bending losses are introduced.

One approach to increase the mode field area and therefore the power handling ca-
pabilities is to assemble several coherently coupled cores in a common cladding to
distribute the power and to increase the power handling capabilities. This approach
is known as multicore fiber (MCF). A single-mode MCF consisting of 19 coupled
cores with a large mode field area of Ag = 465um? was investigated. The fiber
has a close to Gaussian field distribution and can be used as, and be spliced to, a
(single mode) step index fiber. The bending sensitivity of the 19-core fiber is close
to a manageable limit so that the fiber has to be handled carefully to avoid sharp
bends. However, by avoiding bending radii smaller than 0.2 m and splicing the fiber
to a fiber laser, a high-power test with 356 W (limited by the available laser source)
was demonstrated.

Bragg-type photonic bandgap fibers offer the possibilities to reduce the bending sen-
sitivity of large mode area fibers. Therefore, Bragg fibers (BF) were investigated as
well and a method of optimizing their multilayer cladding was developed. Based on
an optimized structure several fibers were produced and characterized in the labo-

ratory. The optimized BFs were virtually free of bending losses and they showed
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a much lower bend-induced mode field deformation when compared to step index
fibers.

Another type of fiber which uses loss management to achieve and maintain a high
beam quality, the leakage channel fiber (LCF), was also examined. At first, a simple
LCF with 5 holes was investigated. The measurements revealed an effective mode
area of A.g = 383 m? and a beam propagation factor of M? = ZW& = 1.1. Then
the influence of additional microstructured layers was examined. It was found that
if the design is limited by high bending losses, increasing the number of layers is
not sufficient to substantially reduce these losses but the differential losses between
the fundamental mode and higher-order modes can be increased. Furthermore, the
bending sensitivity could be reduced by changing the hole sizes from smaller holes in
the inner microstructured layer to larger holes in a second layer to further optimize
the fiber.

Additionally, the use of cladding resonances in LCFs is considered. By carefully
designing the fiber diameter, core-guided higher-order modes can be resonantly cou-
pled to cladding modes substantially improving the differential losses. The final
design with a fundamental mode area of 708 1m? can be used as a standard single-
mode fiber, efficiently guiding diffraction-limited high-power heams.

Larger mode field areas can be achieved if more modes are allowed to propagate with
low losses. A LCF for the use with present high-power fiber lasers and amplifiers
which usually show a minor LP;; mode content was designed. The fiber guides LPg;
and LP;; modes and exhibits a fundamental mode area of A, = 1187 pm?.
Besides the comprehensive studies of (asymptotically) SM fibers, the possibility
to transport a fundamental mode beam in multimode fibers was also investigated.
Based on the assumption that a large difference of the effective refractive index
Aneg (e.g., > 107%) prevents mode coupling, several step index fibers and a 7-core
multicore fiber were tested. In particular, a fiber with a core diameter of 30 pm and
an NA of 0.06 was intensively studied. When a Gaussian heam is carefully injected
into this fiber using suitable coupling optics, a high beam quality can be maintained
within the fiber. A beam propagation factor of M2 =~ 1.12 was measured after 10 m
of fiber even when the fiber was strongly bent or moved. Cutback measurements
showed that the beam propagation factor does not change noticeably with the fiber
length. The NA of the fiber is high enough to prevent bending losses for bends with

R > 0.1m. The bend-induced mode field reduction and deformation was measured
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using a special experimental setup and compared to simulation results. A high power
test resulted in a M? of 1.35 after a 100m long fiber measured at a output power of
800 W.

Finally, in accordance with the fundamental mode transport in multimode fibers
requirements for the transport of radially and azimuthally polarized modes are pro-
posed. Based on this conditions three different fiber concepts for maintaining ra-
dially and azimuthally polarized modes are suggested. The results of simulations
demonstrate the potential of these fibers for the delivery of such special modes.
Parametric studies are used to maximize the mode field areas of the different fiber
concepts. As a result, specialty fibers with higher mode field areas as published
so far are proposed. For instance, a fiber with a ring-shaped core around a cen-
tral air hole maintaining the TEq; mode with a mode field area of 280 pm? at 1 pm

wavelength.
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Chapter 1

Introduction

1.1 Motivation

In 1960 when T. H. Maiman demonstrated the first laser [1] no one could have fore-
seen the versatile fields of applications lasers cover today. Maiman himself claimed:
"A laser is a solution seeking a problem.", (e.g., interview with New York Times
1964 [2]). However, soon after he realized the first laser in the visible wavelength
range scientists intensified the work on a new concept of communication system
termed "optical communication" which could transport a tremendous amount of
information. But atmospheric influences would render free space optical communi-
cation useless and a suitable beam guiding system was missing. Evacuated straight
or highly reflecting tubes would be bulky and expensive and losses of optical waveg-
uides at that time such as multimode fiber bundles were much too high.

In 1966 K. C. Kao and G. A. Hockham suggested the use of glass fibers with a small
core and only a very small refractive index difference between core and cladding (of
about 1%). Such a fiber works as a single-mode waveguide without the problem
of multimode dispersion [3]. Furthermore, they compared the absorption, scatter-
ing and other losses of different materials including crystals, inorganic glasses, and
organic polymers. They identified glasses as the most promising materials, esti-
mated a Rayleigh scattering loss on the order of a few decibels per kilometer at
1 pm wavelength, and stated that with the reduction of impurities the absorption
can be further decreased. The first measurements were performed with fiber bun-
dles and showed losses of several thousand dB/km. In the late 60s commercially

available rods and tubes were used to draw multimode fibers with a transmission
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loss of 140dB/m and even 40 dB/m from preforms produced from a double layered
melt at the University of Southampton (GB) [4].

In 1970 Kapron et al. reported on a single-mode fiber with a transmission loss of
20dB/km produced at Corning Glass Works (USA) [5]. Kapron and his co-workers
added a suitable oxide dopant to adjust the refractive index of the glass. Instead of
using different glasses with similar melting temperatures to form core and cladding
of the fiber, both were based on silica. This work triggered further research in
laboratories worldwide. At that time the water content of the preform glass was
the main cause for transmission losses in optical fibers especially in the infrared.
Later the researchers at the Bell Telephone Laboratories developed the "modified
chemical vapor deposition" (MCVD) process which reduced the water content in
the glass and therefore significantly reduced the losses [6]. With further variations
of this technique and the development of suitable polymer coatings to prevent fiber
fractures and to protect the fiber from water and dust, a robust, flexible, and low
loss beam guiding system was achieved. The development of such fibers together
with the invention of the erbium amplifier in 1987 [7] led to the breakthrough of
optical communications which has revolutionized the way of communication.

At the same time various laser systems at different wavelength were developed, out
of which only a few made their way to industrial applications. The first high-power
laser system was the CO, gas laser [8] which has been the dominating tool in the
field of high-power material processing for many decades and is still widely-used for
cutting and welding applications.

With the appearance of diode lasers as highly efficient pump sources for solid-state
lasers, the latter became more powerful and their running costs were reduced. To-
gether with new laser designs for improved heat management such as thin-disc [9]
and fiber [10] lasers, the output power as well as the beam quality of solid-state
lasers has increased tremendously over the past years [11, 12].

However, the successful commercialization of high-power solid-state lasers is partly
attributed to the fact that they usually operate at a wavelength of about 1pm
which enables efficient and flexible beam transport with silica optical fibers. The
beam transport of C'Oq-lasers at about 10 pm instead is realized by the free space
beam and "flying optics" which is much more expensive and has the drawback of
focal shifts at the workpiece.

On the other hand, the tremendous impact of solid-state lasers on material pro-
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cessing and the rapid increase of beam quality and output power are driving forces
in the development of high-power capable beam delivery systems. But the power
scalability of such systems over significant distances is limited by the onset of sev-
eral nonlinear effects inside the waveguide material [13], mainly stimulated Brillouin
scattering and stimulated Raman scattering. Since the threshold of most nonlinear
effects is proportional to the intensity, increasing the effective mode area is the key
to increase the power handling capabilities. Starting from a standard single-mode
fiber used for optical communication systems with an effective mode area of about
301m?, the core size must be increased significantly to meet this goal.

To keep the waveguide single-mode, the numerical aperture (NA) of the fiber has to
be decreased at the same time. Besides the difficulties of producing low NA fibers, a
very low NA results in an excessive bending sensitivity which does not allow the use
of such fibers for flexible beam delivery applications with reasonable bending radii.
Similar problems are faced by the task of a further power scaling of fiber lasers and
amplifiers. In order to overcome these problems, several specialty fiber concepts are
investigated with the help of simulations and experiments within this work.
Besides the power and the beam quality of laser sources, other properties of laser
beams have recently attracted a lot of attention due to applications in material
processing. For example, special field distributions and polarization states such as
radially and azimuthally polarized ring-shaped modes may improve the quality and
the speed of sheet metal cutting or drilling [14, 15]. Therefore, the conditions for
fiber-based beam delivery of such modes are also studied within this work.

The topics and structure of this work are explained in the following paragraph.

1.2 Structure of this Work

The fundamentals of fiber optics are briefly reviewed in chapter 2. First, step in-
dex fibers are introduced and analyzed by means of geometrical optics. Then, wave
optics is used to obtain the wave equation and the mode structure of optical fibers.
The discussion includes the most important nonlinear effects such as stimulated
Raman and Brillouin scattering. General fiber properties such as attenuation and
bending losses are described as well as the conditions for mode mixing. The quality
of the transmitted laser beam which is related to the mode mixing is also discussed.

Chapter 2 concludes with an overview of different types of specialty fiber concepts,
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for instance, multicore fibers, photonic bandgap fibers, and leakage channel fibers.
Chapter 3 focuses on the methods used for the simulation of these fibers. Finite
element calculations with COMSOL Multiphysics are discussed and it is shown how
the eigenmodes of straight and bent fibers are calculated and how losses are com-
puted by means of perfectly matched layers.

Chapter 4 begins with a description of the fiber handling and then explains all ex-
periments used for the characterizations of the fibers. Especially, the procedures
for obtaining the overall fiber attenuation and for examining the influence of fiber
bends on light traveling inside the fiber are described as well as measuring the beam
propagation factor to estimate the beam quality.

The results of the theoretical and experimental investigations are compared and dis-
cussed simultaneously because the simulations and experiments have been carried
out in parallel and inspired each other. Chapter 5 is subdivided according to the
different kinds of specialty fibers described in chapter 2. Furthermore, the use of
large core multimode fibers for the transport of fundamental mode beams is inves-
tigated in chapter 6 and the results of a high-power test with more than 800 W are
shown. An outlook concerning the beam delivery of radially and azimuthally polar-
ized beams is given in chapter 7 and some preliminary considerations, experiments,
and simulations are presented. Finally, the most important results are summarized

in chapter 8.



Chapter 2
Fundamentals of Fiber Optics

This chapter gives a short summary of the basic physics of optical waveguides.
First, geometrical optics is applied to step index fibers. Then, wave optics is used
to derive the governing equations for the calculation of the eigenmodes of the fibers.
Limitations of the power handling capabilities of optical fibers due to nonlinear
effects are also described. Different loss mechanisms reducing the power during
beam delivery are considered and specialty fiber concepts are introduced. Finally,
the production of optical fibers in general and, in particular, at the production
facility of the IFSW is briefly described.

2.1 Geometrical Optics Applied to Step Index Op-

tical Fibers

A step index fiber (SIF) guides light due to the mechanism of total internal reflection
(TIR). As described in the following, light is confined within the fiber core because
the refractive index n,, of the fiber core is higher than the refractive index n. of the
cladding surrounding the core. Usually a protective layer (e.g., a polymer coating) is
used to give mechanical support to the fiber which is not important for this optical
considerations. The fiber can be considered as surrounded by air with the refractive

index ng;,.. The refractive indices follow the relation
Neo > Nl > Nair - (21)

Here, Snell“s law and trigonometry are used to derive the maximum angle at which

incident light is guided by the fiber. The angles o and 3 describe the refraction at the
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o {?ﬁax ,\ N

oy = col
< Brax L'
r]air ;”g"‘ max nz:l

Figure 2.1: Schematic description of rays in a step index fiber. In the picture of geomet-
rical optics different rays propagate with different bouncing angles within the

fiber core with higher refractive index ng,.

fiber end face which is perpendicular to the fiber axis. The angles v and 0 describe

the refraction at the core-cladding interface. Considering the rays shown in figure

2.1 leads to 3 4+~ = 7/2 and sin 8 = cos~ and accordingly sin 3 = /1 —sin® .
Using Snell 's law one obtains
Ngir SINQ = N sin (2.2)
N SINY = ngsind . (2.3)

The critical angle of total reflection is defined by sin d,,4, = 1 which makes sin v, =

Nel/Neo- Bringing these considerations together leads to

2
n,
5 — o _ 2
Nair SIN Qg = Moy [ 1 — n2 = n%o —Ng - (24)

With n,;, = 1, the critical angle a;,q., specifying the highest angle at which incident

light is guided by TIR within the fiber core, is given by

Qmaz = arcsin y/n2, — n% = arcsin NA (2.5)

which defines the numerical aperture NA

NA =/n2 —n?. (2.6)

The NA is a dimensionless quantity describing the divergence of a light cone which

can be accepted by the fiber core. The maximum acceptance angle at the fiber
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entrance is defined by sin a4, = NA and sin f,,,,, = NA/n,, inside the fiber. Since
linear optics is time invariant, the maximum angle at which light leaves the fiber
is the same as the acceptance angle. Another useful dimensionless quantity is the

normalized refractive index difference A, [16]

nt —n?
A, =2 —d 2.7
N et ©7)

which can be used to rewrite the NA as

NA = 1g,v/24, . (2.8)

The ray optics picture gives a basic explanation of how the light is guided inside a
fiber. Tt can also be used for a basic understanding of (modal) dispersion. A light
ray traveling parallel to the axis of the fiber will have a shorter path L and therefore
be faster than a light ray with a certain angle to the axis, bouncing back and forth
at the interface between core and cladding, with the path length L'.

From figure 2.1 it can be seen that the relation between L and L' is simply L' =
L/cos . Since f << lrad one can use the approximations sin§ ~ ( and cos  ~
1 — 32/2. Together with the previous result sin 3., = NA/n,, for the ray with the
highest possible angle S it follows that

L=1L (17%2) =1 (17 1;;2) =L'(1-A,). (2.9)

co

The delay time between these light rays is therefore

Neol! Mol Mol
=@ _ e e 1—-(1— n)) — tmaz n 2.10
B B B (1-(1-A4,)) A (2.10)

tmaz - tmin

which is proportional to A,,. However, the ray optical description has its limitations.
In reality, the light is not reflected sharply at the interface of core and cladding. It
penetrates the cladding to a distance governed by the wavelength and the NA. Not
only is there a maximum angle for light bouncing inside the fiber, but also only
some discrete intensity patterns are possible. This can all be described adequately

by taking into account the wave properties of light.
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2.2  Wave Optics

In this section the wave equation is derived from Maxwell’s equations and the solu-

tions, called modes, are briefly described [16].

2.2.1 Wave Equation

With the magnetic field ﬁ, the electric field E, the magnetic flux density é, and
the electric flux density D as well as the free charge density p and the free current

density J the Maxwell’s equations in SI units can be written as

V-D = p (2.11)

V-B =0 (2.12)
~ - 9D

VxH = T+ (2.13)
- dB

VxE = - (2.14)

The response of bound charges and currents to applied electric or magnetic fields

can be expressed by the electric polarization density P and the magnetization M as

D = qE+P (2.15)
B = po(H+ M) (2.16)
J = oF (2.17)

These definitions are called constitutive relations because they describe the relations
between E and D as well as H and B. With the constitutive relations and the
Maxwell’s equations light propagation in matter can be described. Dielectric media
such as air or glass satisfy:

e p=0 : there are no free charges

e J— 0 : there are no currents

e M —0 : thereisno magnetization
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With this simplifications, the Maxwell’s equations in dielectric materials can be

written as

vV-D =0 (2.18)
V-B =0 (2.19)
_ oD
B = 2.2
V x Mooy (2.20)
. oH
VxE ~Ho— - (2.21)

By applying Vx to 2.21 and using the identity V x V x £ = V(V-E) - V2E as
well as 2.13 and J = 0 the wave equation

9D
ot?

for the electric field is obtained. The equation for the magnetic field can be found

V(V-E)—V2E = —p (2.22)

in an analogous way.
At this point only isotropic media such as glass without birefringence are consid-
ered. Therefore, E || P and D|| E as in the case of propagation in free space. As a

consequence, 2.18 implies V - D =V - E =0 which reduces the wave equation 2.22

to .
- 0*D
V2E = pio— - 2.23
Ho o2 ( )
With the relation 2.15 this expression can be written as
. »PE 0P
V2E = — — . 2.24
Ho€o o + to o ( )

In order to solve the wave equation it is necessary to make assumptions about the
relation between the polarization density P and the electric field . Assuming that
a change of the electric field changes the polarization density instantaneously, one

can expand the polarization density into a series [16]
P=¢ (X“)E FXVER 4+ OER 4 ) : (2.25)

Because isotropic media are considered Pand E are parallel which requires the even
terms in the expansion to be zero because the tensors Y with i = 2,4,6,.. may
not have the same direction as £. A linear approximation can be made for low

intensities and the series 2.25 is reduced to the first term

P=cxVE . (2.26)
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Inserting the linear approximation 2.26 in the wave equation 2.24 leads to a linear

2nd order partial differential equation

213 P = i (005
V°E = MOEOWE + MO@GOX E (2.27)
P
_ 1

With jgeg = 1/¢? and the relative permittivity e = 1+x®, the linear wave equation

can be simplified to

2 7 e’z 2
V°E = E@E , with e =n (2.29)
2 52
oz M 0% =
V’E = gwE . (2.30)

Analogously, for the magnetic part

L 28

2 __
Vi = ol (2.31)

The eigenvalue equations 2.30 and 2.31 for the E and H field are decoupled, but the
two fields are related by boundary conditions. If an interface between two dielectric
media with a vector ¢, normal to this interface is considered, the fields on both side

of the interface (denoted with the subscripts 1 and 2) are related by [17]

& (Ez—ﬁl) =0 (2.32)
2, (52 - 131) =0 (2.33)
X (52 —El) =0 (2.34)
z, x (ﬁz - ﬁl) = 0. (2.35)

Which means that the normal components of B and D as well as the tangential
components of E and H are continuous at the interface between media 1 and 2.

Choosing suitable cylindrical coordinates an ansatz-function
FE=EVvZT (2.36)
can be made with
U=V Z=Zoy =% T= Ty =™ . (2.37)

To solve 2.31 the field amplitude E° can be separated because of the claimed lin-

earity. Because of the isotropy the term V(V - E) in 2.22 vanished and transversal
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and longitudinal coordinates can be separated. W which is sometimes referred to
as phasor represents the field distribution in the plane normal to the axis of the
fiber (z-axis). The field E is harmonically oscillating in time with a single angular
frequency w and therefore called time-harmonic expressed by the term 7. With the
help of Fourier analysis any time-varying field can be expressed in terms of time-
harmonic components. Z describes a propagating wave with a propagation constant
[ which is the z-component of the wave vector k inside the fiber. [ determines how
the phase and amplitude varies along the propagation direction z.  may be com-
plex. Its real part describes the number of wavelengths per 27 units of propagation
distance, whereas the imaginary part describes optical gain or loss.

By inserting 2.36, the linear wave equation 2.30 can be solved for a step index fiber.
Since for specialty fibers, which are the main topic of this work, no closed-form so-
lution can be found the further discussion is limited to some general remarks before

continuing with the description of more general numerical solutions.

2.2.2 Modes of Optical Fibers

The procedure of solving the linear wave equation 2.30, with the help of the ansatz-
function 2.36, for step index fibers can be found in textbooks [16, 18]. The solutions
called (optical) modes are described by their transverse field distribution ¥ and their
propagation constant 3. Instead of 3 the effective refractive index neg (sometimes

referred to as modal index) defined as

g2 8
Teff = 5% ko (2.38)

can be used to specify the modes. Both may be complex; the imaginary part de-
scribes optical gain (if negative) or loss (if positive). The value of the effective
refractive index of a core mode guided by TIR has to be in between the refractive
indices of core and cladding

Neo > Neff > Ny - (2.39)

The modes can be sorted by their neg. The mode with the lowest neg is the 1st
or fundamental mode. Subsequent modes have increasing effective refractive indices
and are referred to as higher-order modes (HOMs). If a mode has a ner close to
the refractive index of the cladding, the mode is only weakly guided and easily gets

attenuated by bending the fiber.
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In the following, a classification scheme of the modes is given and examples are
shown by plots of their field distribution W, 4. If the electric and the magnetic field
of a mode are orthogonal to the direction of propagation (E, = 0, H, = 0), as for
plane waves in free space, the mode is transversal electromagnetic (TEM). Modes

in an optical fiber can be classified accordingly [19]:

e TE (transverse electric) modes: vanishing electric field in the direction of
propagation (E, =0, H, # 0)

e TM (transverse magnetic) modes: vanishing magnetic field in the direction of
propagation (E, # 0, H, = 0)

e EH, HE (hybrid) modes: nonzero electric and magnetic fields (E, # 0, H, #
0), referred to as HE or EH depending on which field has a larger component

in the direction of propagation

The solutions to the wave equation 2.30 in optical fibers are TE, TM, EH, and HE
modes as represented by the electric field distributions in figure 2.2.

Usually for silica step index fibers (SIF) the difference of the refractive index be-
tween the fiber core and the fiber cladding is small and the so-called weakly guiding
approzimation [18]

2 2
Neo — Ny

A, = <<1 (2.40)

2,
can be used which again leads to TEM modes which are linearly polarized (LP).
Since the weakly guiding approximation is extensively used, modes of optical waveg-
uides are often described as LP modes. Except for the fundamental (lowest-order)
mode these LP modes are not the exact modes of the fiber.

However, for weakly guiding fibers (2.40) the exact solutions are sets of modes
with (nearly) identical propagation constants and therefore called (near) degener-
ate. Linear combinations of these sets of degenerate modes correspond to particular

LP modes as described by table 2.1.



WAVE OPTICS

2.2

(HA ‘IH ‘NI ‘A1) suonnjos 10exe oy} jo suonisodiodns wolj pajeiousd aq uen sopout

1T pozurejod Afresul] oy J, PRy [eoL1199[0 a1} Jo uorjezirejod o) 01 puodsallos smolle 81} pur p[ey dLI09[e oY) Jo A)Isusjul

ay) 03 spuodsaiion uoynqLsIp 10[02 9y, (90°0 = YN ‘wi(g

%2.4) 1aqy xepul dejs ® JO 9INJONIYS SPOW PAJR[ID[R) :g'g @INSL ]




36 CHAPTER 2. FUNDAMENTALS OF FIBER OPTICS

Linearly polarized Exact
LPg; HE
LPn HEs1, TEg1, TMp
LPsy; HE3;, EHyy
LPos HE;
LPim HEo, TEom, TMom
LPy, l#0or1 HE| 1m, EHl 1

Table 2.1: Correspondence between LP modes and the exact modes from which they can
be formed [19].

In view of the power handling capabilities of a fiber, an important property of the
modes is the mode field area (MFA) or effective mode area Aeg which is defined as
[16]

([ Ii Eﬁ*dxdy)z

=0 7 (2.41)
J [ (EE-ydady

eff

where £ is the complex conjugate of E for amode with arbitrary shape. To estimate
the number of core-guided modes, without calculating the whole mode structure, the

normalized frequency or V-number which is defined as [16]

2 . 2
V= Tﬂrw‘ [n2 —n? = %rwNA (2.42)

can be used. The V-number is dimensionless and connects all structural parameters
(NA, core radius) with the wavelength. Thus, it gives a complete description of the
experimental situation. For large V-numbers, the number of modes within a step
index fiber is approximately V?/2. For a V-number of less than 2.405 only one mode

is supported. Hence, the fiber is called single-mode (SM).
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2.2.3 Nonlinear Effects in Optical Fibers

If the electric field strength E is not small enough to neglect the higher-order terms
in 2.25, the linear approximation 2.26 is invalid and the effects of nonlinear optics
become important. Because glass is an isotropic material the discussion may be
restricted to the isotropic case for the following. The parallelism E || P requires
all even terms in the expansion 2.25 to be zero (particularly ) = 0). The next
non-zero term is therefore Y. Higher-order terms (x®, x(7,..) are small and will
only contribute at extremely high intensities. As a result, in the nonlinear case the

polarization series 2.25 can be approximated by
P=e (Xu) 4 X<3>,§2) B (2.43)

Without absorption the relative permittivity ¢ becomes

e = 1+ X(l) + X(3)EQ = €linecar + X(3)E2 (2.44)
x® o B

€ = €linear (1 + =——F ) . (240)
€linear

Because the nonlinear contribution is comparatively small, with ¢ = n? it follows
that
(3)

x®) Fo X =2 a2
n=ng 1+ 1+X(1)E ~ ng 1+2—n%E =ngy + ek (2.46)

where 71y = ¥ /2ng. For fused silica Ry yijica ~ 10722m?/V? (slightly dependent on
frequency and doping) [16].

With the intensity I = (¢/ng)eoepnE? = noeocE? expression 2.46 can be rewritten as

n = ng -+ no =ng + 77,2[ =ng+ nQP/ACﬁ‘ . (247)

Np€pC

The nonlinear refractive index of fused silica is ng sitica = 3 - 1072°m?/W. Hence, as
a result of the y®)-term a modified refractive index is obtained which depends on
the intensity or the optical power P (in watts) and the effective mode area Aeq (in
square meters). Taking 1kW of power and a (minimal) mode field area of about
300 pm? as typical values relevant for this work, the nonlinear contribution to the
refractive index becomes

3% 1070m2/W - 103W

300 - 10~ 12m?

nol = =1-107". (2.48)
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A comparison of this value to the difference of the refractive indices of the core and
the cladding of a state-of-the-art low-NA fiber with n, = 1.45 and NA = 0.07

Neo — N = /02 + NA2 = 1.69-107° (2.49)

shows that, even at this high power level, the nonlinear part of the refractive index
is negligible (nol << ng, — ne)-

This is a very important result because it means that it is possible to calculate the
modes including mode shapes and propagation constants in the linear approxima-
tion. The previous results maintain their validity and commercial software can be
used to calculate the mode structure for all situations considered in this work.
However, it should be mentioned that the nonlinear part of the refractive index
changes the phase of the propagating wave which is described in the following.
Other nonlinear effects limit the power handling capabilities of fibers as described
in the sections 2.2.3.2 and 2.2.3.3.

2.2.3.1 Optical Kerr Effect

The optical Kerr effect or self phase modulation [16] is caused by the intensity
dependence of the refractive index (2.47). After a certain distance z = L the phase

¢ of a propagating wave can be described by

2 P
¢ = kL = konL = ko(no + naI)L = —= (g + na—)L (2.50)
A Aer
which can be separated into a linear term
27 -
Prin = 1oL (2.51)
and a nonlinear term
21 P _ Won2

nonlin = = = 2.52
¢ILO’VLlUL A HQACHL CACH‘ PL §PL ( 9 )

where £ = wyny/c is called nonlinear coefficient. For the values stated above
(P =1kW, A = 300 pm?) and a wavelength of 1 pm a 7-phase shift, corresponding
to half a wavelength, is obtained for L = 5m of the fiber length. This can be tested
with an interference experiment using a reference beam.

The phase delay caused by the Kerr effect can especially be problematic for intense

laser pulses. Usually, the largest phase delay occurs at the symmetry axis of the fiber
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and gets smaller with increasing distance from the center because of the intensity
distribution inside the fiber. This leads to a deformation of the wavefronts which
can lead to a self-focusing of laser pulses.

Other effects caused by the y®)-term are frequency tripling, four wave mixing, and
cross phase modulation [16]. To consider all relevant effects a nonlinear wave equa-
tion has to be formulated which is often called nonlinear Schrodinger equation.
However, mode calculations can be done with the linear wave equation, as stated
above, and the transport of continuous wave laser radiation is the main focus of this
work the nonlinear wave equation will not be further discussed.

For high-power continuous-wave laser beam delivery other nonlinear effects are im-
portant, for example, the inelastic scattering processes [13]. The energy of the laser
light is absorbed or lost due to inelastic scattering and its frequency is changed.
Since the atoms of the glass are usually in their ground state (due to Maxwell Boltz-
mann distribution), energy of the guided beam, called pump, is lost. The frequency
is lowered which results in Stokes lines in the spectrum. If the pump wave gains en-
ergy due to inelastic scattering, the higher energy photons will result in anti-Stokes
lines. The photons may scatter with acoustical (Brillouin scattering) or optical (Ra-
man scattering) phonons. For spontaneous scattering the rate is very low, but at a

certain threshold power stimulated scattering occurs.

2.2.3.2 Stimulated Brillouin Scattering

Brillouin scattering describes the interaction of light with time dependent optical
density variations and hence the variations of the refractive index [13]. A periodic
variation of the refractive index, as caused by acoustical phonons, acts as a three-
dimensional diffraction grating. Because the sound wave is traveling, the laser light
is subject to a Doppler shift which causes a frequency change. An incident photon
is converted into a scattered photon of slightly lower energy and a phonon.

Intense optical fields, such as high-power laser beams in optical fibers, may them-
selves produce acoustic vibrations in the medium via electrostriction which may then
cause Brillouin scattering. This situation is termed stimulated Brillouin scattering
(SBS) of the laser beam. The refractive index variation caused by the SBS has the
effect of a Bragg mirror which usually causes the scattered photon to propagate
in the opposite direction of the incident photon. This stimulated effect can easily

reflect most of the incident power which may damage the laser source.
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The frequency shift vg of the (back-)scattered photon, called Brillouin shift, can be

calculated using conservation of energy and momentum which results in [16]

B 2va|lg| _ 2un
o2 A

Inserting a value of v, = 5960m/s for the speed of sound in fused silica and a

(2.53)

refractive index of n = 1.45 at a wavelength of A = 1pm leads to a Brillouin shift
of vp = 17.3GHz (or AN = 5.77- 107" m = 5.77 pm). The power threshold Pg for
the onset of stimulated Brillouin scattering can be approximated by [13]
21 Ag

" 98(V) - Lag

with the frequency dependent Brillouin gain coefficient gp(v). The effective length

Py (2.54)

Leg = 1/a- (1 — e7*L) L accounts for the power decrease during propagation due to
the attenuation a of the fiber with length L. The SBS threshold is increased if the
linewidth of the pump signal Avp is larger than the SBS linewidth Avp which is
related to the damping of the phonons. This increase can be described by a modified
Brillouin gain coefficient gp(v) [16]

Al/B

A+ Avp (2.55)

gs(v) = gs(v)

Therefore, narrow linewidth sources have considerably lower thresholds. Present
high-power fiber lasers have a rather broad linewidth. As a result, Raman scattering

is usually the most dominating effect.

2.2.3.3 Stimulated Raman Scattering

While Brillouin scattering describes the interaction of light with large-scale acous-
tical phonons, Raman scattering describes the scattering due to interactions with
vibrational (or rotational) transitions in single molecules (optical phonons).

Figure 2.3 shows the possible interactions. Usually, power is transfered to longer
wavelengths (Stokes-lines) because the incident photon (i) looses energy to a vi-
brational state (v) which results in a scattered photon (s) with lower energy. The

frequency shift or Raman shift vz can be calculated using conservation of energy
hvg = |hy; — hog| . (2.56)

Typical Raman shifts in silica are in the order of 10 THz [16] (or AX ~ 3.45-10"% m

= 34.5nm). The more Stokes photons are present, the faster incident photons are
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converted to Stokes photons. Therefore, depending on the population of the states,
the Raman scattering can be stimulated.
The power threshold P for the onset of the stimulated Raman scattering (SRS) can

be approximated by [13]
16 - Aegr

N gR(V) * Legt

with the frequency dependent Raman gain coefficient indicated by gr(v).

Pr (2.57)

Rayleigh Stokes Anti-Stokes
Virtual state
A 2
- d
= = z >
I i < i
Excited ﬁ ﬁ " =
vibrational :‘ I
state 0
5 AE, =hv, -
Q
B Ground state

Figure 2.3: Photon scattering energy scheme. If the incident (i) and the scattered photon
(s) have the same energy, the photon is Rayleigh scattered. If the scattering
leads to an excited vibrational state (v), the resulting Stokes-scattered photon
has a lower energy. The scattered photon may receive energy from an already

excited state which leads to anti-Stokes scattering.
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2.3 Attenuation and Losses

In theory, the TIR mechanism used to guide light in step index optical fibers is
lossless, but in practice, some light is lost due to absorption and scattering by the
material of the fiber. In the absence of localized defects, the launched power P;, is
reduced by the fiber attenuation o (usually given in dB/km) and the transmitted

power P, depends on the length of the fiber L
Py = Pp10705 (2.58)

State of the art telecommunication fibers achieve attenuations as low as 0.2 dB/km
in the lowest loss regime at A = 1.55pm and still slightly less than 1dB/km at
A = lpm. In this regime, the main contribution to the losses is Rayleigh scattering
caused by unavoidable density fluctuations in the glass. Impurities (H,0O, Fe, Cu,
Co,..) may cause additional losses. Further losses arise due to non-uniformities of the
doping concentration and variations of the core diameter as well as of the symmetry
along the fiber. Because many interfaces can be present in specialty fibers, surface
roughness becomes an important cause for losses resulting in higher attenuations
compared to step index fibers.

Besides the intrinsic attenuation of the fiber, additional losses may occur due to
stress or fiber bends. Pressure may change the refractive index profile and the
geometry. Either deteriorate the propagating mode and cause losses.

More important are losses due to fiber bends which are usually divided into macro

bending losses and micro bending losses.

2.3.1 Macro Bending Losses

The great advantage of optical fibers is their flexibility. However, bending the fiber
(usually with a radius of a few cm) causes additional losses which are referred to
as macro bending losses. It is known from the wave-optical description, that the
light is not completely restricted to the core. Some part of the power is transported
inside the cladding which can be described by evanescent waves.

Considering the different path lengths indicated by figure 2.4, it becomes obvious
that(due to the finite speed of light) the phase front is deformed by the bend which
results in a radial component of the Poynting vector (§ =FEx ﬁ) implying a loss

of the energy guided by the fiber.
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Figure 2.4: Scheme of a bent fiber. The phase front of a mode is indicated by the dotted

bent

kink

straight

blue lines. The bent-induced mode field deformation is shown by the intensity

distributions.

This shows as well that, if the light is strongly confined in the core as in case of
high-NA fibers, the bending losses should be lower compared to a low-NA fiber with
the same core size because a larger part of the power is propagating in the fiber
cladding of the low-NA fiber resulting in a stronger radial component of the point-
ing vector.

A high value of A, (2.7) ensures a good confinement in the core. For SM telecommu-
nication fibers with NA= 0.14 (e.g., Corning SMF-28), which are used close to the
cutoff (V' between 2.1 and 2.4), the macro bending losses are negligible. However,
in case of low-NA fibers (NA= 0.05 — 0.07), this effect becomes important and is
typically exploited in fiber oscillators to ensure a (close to) SM output even with
MM active fibers [20, 12].

In addition to this geometrical effect, compression of the inner and extension of the
outer side of the fiber bend causes stress which increases the refractive index of the

glass material at the inner side and lowers it at the outer side. This elasto-optical
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effect is counteracting the geometrical effect but it is not strong enough to com-
pensate for it [16]. Further losses occur because the modes in bent fiber sections
are different from the eigenmodes of the straight fiber which causes mode matching
losses. This is illustrated by the intensity distributions in figure 2.4 at the kinks
with an abrupt change of the curvature between the straight and the bent fiber.
With a smooth transition of the bending radius form straight to R = R,,;,, these
losses can be strongly reduced. Usually, the fiber coating and jacketing are used to
restrict the bending radius to values above a certain critical radius (R > Rg.t) to

keep the macro bending losses manageable.

2.3.2 Micro Bending Losses

Micro bending losses arise due to very short bends with very small radii (pm to mm)
often caused by the surface on which the fiber is laid or spooled even when the fiber
is kept macroscopically straight. Therefore, the losses depend on the spooling of the
fiber and on the quality of the surface it is in contact with.

Another influence which can add to the micro bending losses is directly related to
the coating. During the drawing, the bare fiber is fed through a coating bath. The
liquid coating is cured on the fiber by UV-lamps or heat which usually results in
a contraction of the coating leading to a pressure applied to the fiber. Especially,
if the coating is not deposited symmetrically on the bare fiber, the micro bending
losses can be significantly enhanced. Using a large cladding diameter reduces this
influence.

In MM fibers the coupling between different modes may contribute to additional

power losses of an initially excited fundamental mode.
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2.4 Mode Coupling

The eigenmodes of an ideal MM fiber are orthogonal, which means, that they do
not interact and power is not exchanged between these modes.

But disturbances, such as small index variations, geometrical variations, or fiber
bends, alter the mode structure of real fibers. The eigenmodes of the ideal fiber
differ from those of the disturbed fiber. For the sake of analytical considerations
it is usually easier to use the known eigenmodes of the ideal fiber to describe the
modes in the perturbed fiber by decomposing the propagating fields into the known
eigenmodes E, = ESW,(r, ¢)e??*c! (for mode number v) with the help of expan-
sion coefficients which are no longer constants of propagation (ES — E2(2)) [21].
Without considering the time-harmonic oscillation the electric field of the perturbed

fiber EP°"* can be expressed as
EP =N "B (2) W, (r, ) (2.59)

The change of the field amplitudes E%(z) (expansion coefficients) with the propaga-
tion along the z-axis can then be described by coupled differential equations with the
help of coupling coefficients r,,,. To keep this description concise, only the coupling
between two modes is discussed below, but the concept is applicable to an arbitrary
number of modes. In general, the coupled mode equations for two modes can be

written as [22]

dE
7(121 = iﬁlEl + KleQ (260)
dE.
_dz2 iBo By + Ko E)y (2.61)

where the complex propagation constants 31 = (31, +i1; and 5y = 5, +i2; contain
the loss coefficients of each mode in the absence of coupling. The coupling coefficients
obey a symmetry relation [22]

Ki2 = —HKy - (2.62)

Tt is convenient to express the z-dependence of the coupling coefficients explicitly,
for example,
K19 = i K fP(2) (2.63)

with K being real and a function fP** which depends on the nature of the pertur-

bation (usually containing a changed refractive index distribution).
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If the distortion can be described by a refractive index variation of the waveguide
material at the position z = Z, the coupling constants can be calculated with the

help of overlap integrals [21] over the area of the cross section of the fiber
o [ Wi(og)InGop.z < 2) = oz = D] Vale)dd (264)
JA

where U3 (r, ¢) is the complex conjugate of the transverse field distribution Wy (r, ¢)
of mode 1.

An arbitrary perturbation fP* can be written as a Fourier series

fret = Z 2by(cos(Onz) +isin(Oyz)) Z byt O3 (2.65)

N=1

with real values of by and the spatial frequency
Oy =27/LP"" N, N =0,1,2,.. (2.66)

where P has the unit of a length. According to Marcuse [22, 23| only the Fourier
component of fP* at the spatial frequency © = 31, — 35, contributes to the coupling
between the two modes in first-order perturbation theory. This allows to rewrite 2.60
and 2.61 with the help of 2.62 as

dE :

T; = BBy + iKbEye{Prrhr)z (2.67)
dE :

2 = iy + Kb - (268)

using only the term fP' which contributes to the mode coupling and therefore
dropping the index N of by. Following the derivation of Marcuse [22| new variables
E, and E, are defined as

Ei(z) = Ey(z)e2Pw—p)z (2.69)
Ey(z) = Ey(z)er'Brr—par)z (2.70)

and substituted into 2.67 and 2.68. This leads to new coupled mode equations which,
in contrast to the initial equations 2.67 and 2.68, are coupled by a constant coupling
coefficient kK = Kb.
dE,
dz
dFEy
dz

= i Ey +irE, (2.71)

= By +ikE) (2.72)



2.4. MODE COUPLING 47

According to [22], these new equations derived by using only the spatial Fourier
component of 2.65 with © = 3y, — (5, are good approximations of 2.60 and 2.61.
If the perturbation function fP* represented by 2.65 has no spatial Fourier compo-
nent (2.66) which matches the two modes, the difference of the propagation constants
APy = |1 — [2| referred to as phase difference of the co-propagating modes will
prevent the coupling unless 51 = [3.

Which means if the phase matching condition |22]
|B1 — Bo| = On = 21/ LP"N | with ,N =0,1,2, .. (2.73)

is not satisfied for any integer N, the modes remain efficiently uncoupled. Since ©y
is real, only the real parts of the propagation constants are considered in 2.73.

The effect of the imaginary parts, thus the losses of the two modes, on the coupling
was investigated by Zhang et al. [24]. Before continuing with the derivation of a
condition for the imaginary parts of the modes it is helpful to consider the illustra-
tive results of a numerical simulation.

Zhang et al. were working with FEM-simulations similar to those used within
this work (which are described in chapter 3). They investigated the wavelength-
dependent coupling of a core mode and a cladding mode in a special microstructured
fiber. At a certain wavelength, the phase matching condition (2.73) is fulfilled and
the two modes couple. Figure 2.5 [24] shows the real (a) and the imaginary parts (b)
of the effective refractive indices of the core and the cladding mode which is denoted
as defect mode. At the anti-crossing point indicated in (a) the imaginary parts of
both modes are equal as shown in (b). During the variation of the wavelength, the
power from the core mode is completely coupled to the defect mode and vice versa
as indicated by the insets.

To investigate the influence of the losses on the coupling, Zhang et al. increased
the loss difference between the two modes by changing the special cladding of the
microstructured fiber. The losses of the cladding mode were increased without af-
fecting the core-guided mode and the simulations were repeated.

The phase matching condition (2.73) is fulfilled again, but in this case there is no
anti-crossing of the real parts as shown in figure 2.6(a) and the loss curves shown
in figure 2.6(b) do not intersect. The losses of the fundamental core mode are in-
creased at the phase matching point, but the complete coupling (or complete energy

transfer) was prevented by the increased difference of the losses of the two modes.
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Figure 2.5: Analyses of real parts (a) and imaginary parts (b) of the effective mode

indices neg of two modes as a function of the wavelength taken from [24] in

case a complete coupling occurs. The insets show the intensity distributions

of the coupled modes at selected wavelengths.
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neg of two modes as a function of the wavelength taken from [24] in case an

incomplete coupling occurs. The insets show the intensity distributions of

the coupled modes at selected wavelengths.
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The crossing is a signature of both modes following their "natural" dispersion curves.
The anti-crossing instead shows an influence of one mode on the other indicating

the influence of the coupling of the two modes.

As a next step, a condition which has to be fulfilled in order to allow mode coupling
depending on the imaginary parts is derived from equations 2.71 and 2.72. Following
the argumentation of Zhang et al. [24], solutions of the form E, = E%”* and
E, = Egeiﬁz are assumed with 3 as the propagation constant of the coupled modes.
Substituting these fields into 2.71 and 2.72 leads to

BEY = BLEY+ kEY (2.74)
BES = BoEY + KEY. (2.75)

These coupled equations can be rewritten into a matrix form
- —K EY
p=h =0 (2.76)
—K B — o Ly

dct(ﬁ_ﬂl o >_0, (2.77)
—K B/

the propagation constant of the coupled modes 3 can be expressed as

By using

ﬁ:t = ﬂawe + V% + K2 (278)

with fue = (61 4 £2)/2 and 6 = (81 — £2)/2) (B1 = Bave + 9, P2 = Bave — ). To
check the consistency of this equation one can see what happens if the coupling
vanishes (K — 0). Equation 2.78 then gives the initial modes with £; and f,
(Bt = Bave TVO2+0=Pave £ = (81 + 52)/2 £ (1 — 2)/2) = Puy2).

Now the coupling with £ # 0 is considered. For bound modes, the propagation
constants ; and S, are both real. Hence, § is also real and /62 + £2 is larger than
zero. f3; cannot be equal to f_, even at the "crossing" point where § goes through
zero, and a regular anti-crossing is taking place. This corresponds to the situation
displayed in figure 2.5(a) even though the modes considered there are lossy. This is
because the loss difference is small as explained in the following.

For leaky modes, 8; and (5 are both complex, hence 6 may be complex and can be
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written as 0 = §,+1J;. At the phase matching point, the real parts of the propagation

constants of the two leaky modes are equal which means §, = 0. Hence,
P+ K= =6+ K2 (2.79)

By inserting 2.79 into 2.78 one can easily see that if §; < &, then [, and S_ have
different real parts but equal imaginary parts, and a complete coupling (regular
anti-crossing) between the two leaky modes occurs. If §; > &, then 8. and S_ have
equal real parts but different imaginary parts and an incomplete coupling appears.
The two modes actually cross.

A regular anti-crossing can therefore only happen if £ > §;. From 6 = (8, — (2)/2
and § = §, +40; follows &; = (B1; — fa:)/2. Hence the loss matching condition can

be written as

k> 1/2|Im(B;) — Im(Bs)]| (2.80)

Only if this conditions is fulfilled a complete coupling can happen. Otherwise, it is
possible for the two perturbed modes to have equal real parts and a crossing of the
two modes takes place [24].

As a result, mode coupling does not happen easily in leaky optical fibers because it
requires phase matching (2.73) and loss matching (2.80) at the same time. A similar
result was obtained by Marcuse using coupled power equations instead of coupled
field equations [25]. In the case of incomplete coupling the losses of a propagating
fundamental mode can be increased at the phase matching point where the real parts
of the propagation constants (or effective refractive indices) are equal as can be seen
in figure 2.6 (b) but a complete energy transfer or oscillation between these modes
is not happening. This offers the possibility to prevent the losses of a fundamental
mode due to mode coupling by tailoring the losses of the fiber modes. Usually, the
phase matching condition is not fulfilled in unperturbed fibers, but if the core radius
is large, the real part of the effective refractive index of subsequent modes is similar

and the loss matching condition could be used to avoid mode coupling.

2.4.1 Loss Management and Confinement Loss

Some specialty fibers such as photonic bandgap fibers and leakage channel fibers
(which will be described in sections 2.6.3 and 2.6.4) use intentionally introduced

losses to increase the quality of the delivered beam. So far, this has mainly been
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investigated in the context of active fibers in which these losses prevent the lasing of
HOMs. However, with the knowledge of the previous chapter, showing that mode
coupling only occurs if both phase and loss matching is fulfilled; loss management
can also be used to maintain the beam quality in passive fibers as is investigated
within this work.

Fibers which are used for loss management have a special cladding which prevents
a complete TIR. As a result, all modes are lossy but it is possible to make fibers
for which the losses of the fundamental mode agy are acceptable or even negligible.
For instance, if the losses are much smaller than the material absorption of the
waveguide apn << Qmaterial-

At the same time, the losses of HOMs may be very high because their fields penetrate
further into the cladding. Such a fiber is mode filtering and for a sufficient length only
the fundamental mode can be observed at the fiber output even when the beam was
MM at the beginning. Therefore, such fibers are called asymptotically single-mode.
The power in the other modes is simply coupled (which means lost) to cladding or
radiation modes. This concept is based on loss management where the quotient
arpn/anom between the losses of the fundamental mode apy and the next higher-
order mode (or the mode with the second highest losses) agom, usually appiy, is an
important parameter referred to as loss ratio. This parameter is especially important
for active fibers in which high losses prevent HOMs from lasing. Less established is
the knowledge that the coupling between a well-guided fundamental mode to HOMs
can be avoided by a sufficient loss difference as shown in the previous section.

In theory, the overall losses of a mode are characterized by the imaginary part of
its effective refractive index. Hence, the losses can be calculated using the complex
effective refractive index neg-.

Since absorption and scattering losses depend on the quality of the material and
the fiber production, such losses are usually neglected within the simulations and
characterized later by empirical values. The calculation of a complex ngg is necessary
to design fibers which are making use of loss management.

If the power of the fundamental mode is lost due to coupling to HOMs, not only the

efficiency of the beam transport may be reduced, but also the beam quality changes.
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2.5 Beam Quality and Beam Propagation Factor

If a fiber guides more than just one mode, a SM free space beam which is focused
into a fiber can excite several fiber modes in case of imperfect mode matching. Even
if only the fundamental mode is excited at the fiber input, defects in the fiber or
distortions, such as fiber bends, may couple different modes which results in a MM
beam at the fiber end.

Within the laser community, the product of the divergence half-angle 6 and the
radius of the waist w (the narrowest point) of a laser beam called beam parameter
product (BPP) is commonly used to quantify the focusability of a laser beam [26].
The BPP of a fiber, defined by the core radius and the NA,

TeoNA > Ow (2.81)

has to be larger than the BPP of the laser in order to accept the beam. The smaller
the BPP, the better the focusability of the laser beam. The lowest possible BPP

A
0, = — 2.82
owo - ( )

is given by the diffraction limit and fulfilled by the Gaussian beam. The ratio of the
BPP of an actual beam over that of an ideal Gaussian beam at the same wavelength

A is referred to as beam propagation factor M? (commonly called "M squared")

M? = 0w - (2.83)

™
Y-
Hence, the M2-value of a diffraction-limited Gaussian beam is 1. Smaller values are
not possible. The M?-factor is a simple method to quantify a beam quality with
a single number (or one for each plane of symmetry if the beam is not circularly
symmetric). Furthermore, it can be used to predict the evolution of the beam radius
by simply replacing the wavelength with M2 times the wavelength in all equations
of the Gaussian beam analysis [26)].

However, it has the drawback that the A/2-value does not give information about the
power distribution in different modes. The M2-value is ambiguous. The same values
might be obtained for beams with different mode compositions. Even worse, a single
higher-order mode, which could be transformed to an almost diffraction-limited
beam by means of diffractive optics, may have a higher AM/2-value than a multimode

beam which cannot be converted to a (close to) diffraction-limited beam. Therefore,
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it is questionable to use the A/2-value to quantify the beam quality. However, if the
M?-value is close to 1.0, HOMs cannot be significant and the beam quality is said
to be good.

To determine the beam propagation factor M? the beam waist and the divergence
of the beam have to be known. Both can be obtain by measuring the caustic or by
measuring the size of the near- and the far-field as well as the distance between them.
Different definitions to determine the beam size exist. For example, a decrease of the
intensity to 1/e? of the maximum intensity, a full width at half-maximum (FWHM),
or a radius including 86% of the beam energy can be used as a definition. Such
criteria are suitable for laser beams with a high beam quality, but to predict the
evolution of an arbitrary intensity distribution correctly the definition according to
ISO Standard 11146 [27], based on the second moments of the intensity distribution

I(x,y), should be used. It can be written as

J @1 (x,y)dady
[ 1(z,y)dzdy ’

if the coordinates are defined relative to the center of gravity of the intensity dis-

Wy =2 (2.84)

tribution (first moments vanish) and accordingly for the radius in y-direction w,.
For Gaussian beams, the second moment method gives the same result as the 1/¢?
method, whereas for other intensity distributions there can be significant deviations.
The M? factor of Hermite-Gaussian modes H,,, (rectangular coordinate system)
with indices n and m is M7, ., , = (2m+1) in x-direction and M7, ., , = (2n+1)
in y-direction [26], whereas for Laguerre-Gaussian modes L, (cylindrical coordinate
system) it can be obtained by M?, =2x*p+1+ 1 [28].

In the case of optical fibers, the near-field (NF) intensity distribution is given by
the eigenmodes. Each mode of the fiber has a certain divergence when leaving the
fiber. The divergence of the highest guided mode defines the acceptance angle of
the fiber. The NF of a fiber mode is obtained by an eigenmode calculation (as will
be described in chapter 3.1), but the far-field (FF) has to be calculated as well in
order to obtain the beam propagation factor M? of a certain fiber mode.

The Kirchhoff integral [26], which describes the propagation of electromagnetic
waves in homogeneous media, can be used within the paraxial approximation. It

describes the field E at the position Z5 as an integral over the plane (z1,y1) at 2

etkp(@1,y1,21,02,y2,22)

i
E(1s) = E(x2, 12, 22) ://XE(Ihylel) drydy,  (2.85)

p(x1, Y1, 21, T2, Y2, 22)
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with the distance between 75 and 7

(@1, 32) = VL2 + (22— 1) + (32 — 1) (2.86)

and the propagation distance L = zo — 2.
In case of the fibers, the refraction at the glass-air-interface has to be considered

when calculating the FF form the eigenmode.
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2.6 Specialty Fibers

The goal of laser beam transport in the kW regime is not achievable with SM telecom-
munication fibers. Even if the fiber would not be burned directly by the high powers,
nonlinear effects such as SBS (section 2.2.3.2) or SRS (section 2.2.3.3) would render
the delivery of the laser beam impossible. On the other hand, multi-kW multimode
beam delivery for material processing with solid-state lasers is state-of-the-art.

The problems arise with increasing beam quality of the laser sources especially fiber
and thin-disc lasers. If a high-power SM (or close to SM) laser beam is delivered
with state-of-the-art MM (step index) fibers for high-power lasers with core sizes of
about 100-1000 pm, the beam quality usually deteriorates during propagation due
to the large number of modes and the low mode spacing (small An.g) which favors
mode mixing because the phase matching condition 2.73 is more likely fulfilled and
the loss matching condition 2.80 is fulfilled anyways (the modes are guided by TIR).
Since standard SM fibers do not have the necessary power handling capabilities,

alternatives were investigated during the last years.

2.6.1 Low-NA Fibers

The most direct approach to increase the power handling capabilities and the thresh-
old of nonlinear effects, in particular SBS and SRS, is to increase the mode field area
(2.41) of standard SM fibers. This implies to increase the core size and to compen-
sate for it by reducing the NA of the step index fiber to keep the V-number (2.41)
low in order to prevent the appearance of HOMs (see section 2.2.2). Usually, this
approach is limited to core diameters of less than 15 pm because lower NAs cannot
be manufactured reliably.

A special class of such low-NA fibers, produced to match with the active fibers of
present fiber lasers, is slightly multimode and therefore called few-mode. Such fibers
with core sizes between 20-30 pm and NAs between 0.05 — 0.08 are often referred
to as large mode area (LMA) fibers. However, their cores and mode field areas are

small in comparison to the fibers usually used for MM multi-kW beam transport.

2.6.2 Multicore Fibers

Another approach to increase the mode field area is to assemble several cores in a

common cladding to distribute the power in order to increase the power handling
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capabilities. The cores have to be coherently coupled in order to to maintain a high
beam quality. Hence, such a fiber is called multicore fiber (MCF).

Usually, identical cores are coupled. In most cases coupled mode theory is applied
to model and understand such structures [29] which leads to 2N-modes if N single-
mode cores are coupled. The eigenmodes of the coupled cores are called supermodes.
The core size, the core-to-core distance, and the NA of the single core defines the
coupling strength between the modes of the different cores. Therefore, the NA of
the fiber can be tailored very well and fibers with extremely low effective NA, not
reliably accomplishable as single core step index fibers, are possible to produce.
One approach within this work was to design a MCF in such a way that a laser
beam can be coupled to a single Gaussian-like fundamental supermode by means of

simple optics without shaping the beam beforehand.

2.6.3 Photonic Bandgap Fibers

Another possibility to guide light is to trap the light inside the fiber core by creating
a forbidden region in which no propagation of light of a given wavelength is allowed.
Such a region is formed by a microstructured fiber cladding consisting of periodic
variations of refractive index forming a photonic crystal which creates a photonic
bandgap (PBG). Since index guiding is not needed in such structures, the refractive
index of the core may be lower than the refractive index of the cladding. Even
hollow cores are possible.

The earliest idea of such fibers was based on a cladding of concentric rings with dif-
ferent refractive indices, similar to a Bragg mirror, but in a cylindrical configuration
[30]. A fiber based on this concept is called Bragg fiber (BF).

Another concept, which had a higher impact, is based on tiny air holes arranged to
form a two dimensional (2D) crystal lattice running all along the whole fiber. Such
fibers are called photonic crystal fibers (PCF) |31, 32]. However, the expression is
widely used to term all kinds of microstructured fibers, even if a photonic bandgap
is not present, as in the case of leakage channel fibers which are presented in sec-
tion 2.6.4. Without total internal reflection (TIR), photonic bandgap fibers do not
exhibit any truly guided modes. They always have a finite cladding and light can
tunnel trough the region creating the photonic bandgap. Therefore, all modes are
lossy. The concept is based on loss management (see section 2.4.1) of the different

modes. Such a fiber may be mode filtering and for sufficient length only the funda-
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mental mode will be observed at the fiber output, even if the beam was MM at the
beginning. Therefore, these fibers are asymptotically SM but PCFEs which exhibit

only one core-guided mode are also possible.

2.6.3.1 Bragg Fibers

The photonic bandgap of BFs is achieved by a microstructured region consisting
of several alternating concentric high and low refractive index layers as shown in
figure 2.7. Solid-core BFs can be fabricated by standard modified chemical vapor
deposition (MCVD) processes |33, 34].

The guiding mechanism in BF can be understood with an antiresonant reflecting
optical waveguide (ARROW) model in which each layer of the multilayer cladding
can be considered as a Fabry-Perot resonator |35, 36]. The light is trapped inside the
core for wavelengths at which these resonators are antiresonant as sketched in figure
2.7. Depending on the refractive indices n, and n;, as well as the core radius r.,,
the layer thicknesses a and b can be optimized to reduce the losses for a certain
wavelength . In case of \/R.,. << 1, simple considerations lead to the conditions

for the optimum high-index layer thickness a

20+ 1A
= # L 1=0,1,2,.... (2.87)
4,/n2 —n?+ 7(2;\60)2
and the optimum low-index layer thickness b
b=02m+1)re,, m=0,1,2,...., (2.88)

to achieve the lowest propagation losses in straight Bragg fibers |35, 36]. By using a
semi-analytical iterative approach new and improved conditions for the layer thick-
nesses, which significantly reduce the losses especially for bent fibers, are presented

in chapter 5.2.2.
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Figure 2.7: Scheme of the refractive index profile of a Bragg fiber (left) and guiding
mechanism in the ARROW picture (right).

2.6.3.2 Photonic Crystal Fibers

A very active field of research concentrates on photonic crystal fibers (PCFs) which
are formed by a periodic crystal lattice of air holes [31, 37|. Some fiber end faces of
such PCFs are exemplarily shown in figure 2.8. The core region is simply formed by
removing one or several holes. In other words, as a defect of the crystal, which forms
a region where light can propagate. The crystal lattice is described by the hole size
d and the pitch (hole center to hole center distance) A. Most of these structures
are based on TIR because the air holes effectively reduce the refractive index of the
cladding, thus the core has a higher refractive index. However, a special class of
such microstructured fibers use a photonic bandgap. Within these fibers, light of
certain wavelengths is not allowed (by Maxwell equations) to propagate which traps
the light in the defect region forming the core. The refractive index of the core in
such fibers is usually reduced to compensate for the reduction of the refractive index

by the air holes in the cladding.
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Figure 2.8: Cross-sections of various types of photonic crystal fibers taken from a review
article of P. Russell [31].

2.6.3.3 Hollow-Core Fibers

Because of the low nonlinearity of air, hollow-core optical fibers are particularly in-
teresting for high-power applications even for the delivery of ultra short laser pulses.
Due to the negligible dispersion of air, the total dispersion is dominated by the dis-
persion of the waveguide and can therefore be tailored within a large regime. Hollow
PCFs offer the possibility to transport laser beams in the near infrared. More than
95% of the power are transported in air and a low bending sensitivity can be achieved
at small mode field areas [38]. A very high air fraction in the fiber cladding, which
leaves only very small silica support bridges, is necessary to obtain such properties.
However, the attenuation of these fibers is very high compared to their solid-core
counterparts. The losses of commercially available fibers are in the range of 0.1 dB/m
(e.g., NKT Photonics HC-1060-02). The high losses and the extremely fragile struc-
ture, which makes the production difficult and the handling problematic, has pre-
vented industrial applications of such fibers until now.

Hollow-core BFs require a high-index contrast in the microstructured region. There-
fore, special material combinations have to be used. In addition to their optical
properties (high refractive index contrast, low absorption, and high purity), these

materials have to fulfill certain thermo-mechanical constraints in order to be drawn
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together to an optical fiber. Hollow-core BFs have only been demonstrated in the
10 pm wavelength regime using As,Ses (n = 2.8) and a low-index polymer "PES"
(n &~ 1.55) [39]; and around A = 1pm with an air-silica BF [40]. In this fiber,
the low-index layers were formed by air which results in a structure similar to the
hollow-core PCF.

2.6.4 Leakage Channel Fibers

Another type of microstructured fiber, looking like a simplified version of a solid
core PCF, is the leakage channel fiber (LCF) [41, 42]. A LCF may be considered as
a special version of PCF in which the holes surrounding the core have the function of
a sieve. The concept is only based on loss management. The HOMs leaking through
the microstructured region may be much lossier than the fundamental mode.

A photonic bandgap is not responsible for guiding the light, but a disturbed in-
dex guiding mechanism. Usually, such fibers are made from the same material for
cladding and core, but there are some low-index inclusions around the core (figure
2.9). There is a large refractive index step between the core and the low-index in-
clusions and no index step between the core and the region between these inclusions
which causes lossy channels for all modes. Due to the large refractive index step,
and ease of fabrication, air holes are considered as low-index inclusions in the fol-
lowing. The same parameters as for the PCFs are used to describe the structure
(hole diameter d, pitch A). However, it would be more illustrative to use the bridge

width w, = A — d to describe the structure of the fiber.

Fused
Silica

4 :1 wp= A-d
I (Bridge Width)

) Leakage Loss
Air Holes

Figure 2.9: Scheme of a leakage channel fiber. A leakage channel fiber consists of a fiber

core surrounded by low-index inclusions such as air holes.
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2.7 Fiber Production

Optical fibers are produced from a preform with a fiber drawing tower. Basically,
the preform is a short and transversally enlarged version of the future fiber. Since
the material volume is preserved, the drawing process makes a long piece of thin
fiber from a short but thick bulk preform. The preform can be made by deposition
of different glasses, for instance, by a modified chemical vapor deposition (MCVD)
or by assembling different glass rods or tubes. The latter is called stack-and-draw
method and is commonly used to produce photonic crystal and multicore preforms.
The LCF preforms used for this work were manufactured by ultrasonic drilling of
pure fused silica rods. The preform, mounted at the upper stage of the drawing
tower, is melted with a furnace at a specific drawing temperature (typically between
1800°C -2000°C). After passing through the furnace the liquid glass is rapidly cooled
down and wheels are used to pull the solidified glass.

By optimizing the parameters of drawing tension, temperature, and preform velocity
(speed with which the preform is introduced into the furnace), a stable drawing
process leading to the desired fiber diameter can be achieved. If the preform contains
air holes, the geometrical properties of the drawn fiber depend also on the gas
pressure applied to the holes. Finally, the fiber is fed trough one or two coating
applicators. The coating prevents the otherwise brittle fiber from braking. Finally,
the fiber is coiled up with a capstan at the ground level of the drawing-tower.

The IFSW uses a modified Nextrom OFC20 drawing tower. It can handle preforms
with diameters from 15 to 50 mm and it can draw fibers to diameters ranging from
90 to 720 pm. It offers the possibility to apply a controlled gas pressure which is,
for example, used for the drawing of LCFs. The drawing tower is 9.5m high and
comprises 3 stages. The upper stage shown in figure 2.10a) is used for the preform
mount and the furnace. The preform is fed into the furnace and heated. The glowing
glass melt inside the furnace illuminates the preform. The bright light visible in the
picture is caused by scattering at the interface between the actual preform and a
cheaper glass handle used for handling the preform.

A fiber leaving a coating applicator is shown in picture b) and a piece of a LCF
preform in picture ¢). The coating is cured by UV-lamps which results in a green
glow. The IFSW drawing-tower includes two coating applicators which makes it

possible to use a soft inner coating, to reduce the influence of micro-bending, and
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a hard outer coating which gives mechanical strength to the fiber to reduce macro-

bending losses.

Figure 2.10: Pictures of the upper stage of the IFSW drawing tower a), a fiber during

coating application b), and a LCF preform with 2.5 cm diameter ¢) [43].



Chapter 3

Simulation Methods

Based on the knowledge of the theoretical background presented in chapter 2, simu-
lation tools were adapted and used to evaluate the specialty fiber concepts described
in section 2.6 with the focus on transport of high-power laser beams with diffraction-
limited or near diffraction-limited beam quality.

The present chapter describes the methods used for the simulation of the fiber prop-

erties such as the mode structure, the overall losses, or the bending sensitivity.

3.1 Eigenvalue Problems

The electromagnetic field of radiation propagating in a fiber can be described by
wave equations of either the electric or the magnetic field. Since most materials
are non-magnetic and the magnetic field is continuous within such materials, it is
advantageous to choose the magnetic field to work with. The wave equation for the
magnetic field H can be derived analogous to the wave equation 2.22 for the electric

field E as described in section 2.2.1.

63
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By applying Vx to 2.13 and using J =0 one obtains

v x <V>< ) = Vx 22 with2.15 (3.1)

V x (V ﬁ) = Vx ( 60E+P ) , with 2.26 (3.2)

V x (v x ﬁ) - ( (14 xD) tE) ,withe=1+y®  (3.3)
. P

V x (v x H) = Ux (EOFEE>  with2.14 (3.4)

2

V x (V X H) = eougea 2H, with prgeg = 1/c? and € = n? (3.5)
- n? 0® -

v x (v x H) = —Sonh. (3.6)

As calculated in 2.48 and 2.49 the nonlinear part of the refractive index is negligible
(nel << g —ng) for the experimental conditions considered in this work and the
linear approximation 2.26 can be used. However, the weakly guiding approxima-
tion 2.40 used for step index silica fibers (with only low refractive index differences
between core and cladding) is not applied in this case because specialty fibers are
investigated. With Cartesian coordinates, as typically used in finite element calcu-
lations, and time-harmonic fields, the magnetic field H of a wave propagating inside

the waveguide can be expressed as
H(x,y,zt) = H(x,y, )" (3.7)

With this ansatz-function and w = cky, equation 3.6 can be written in the form

which is implemented in the software used for the simulations [44].
Vv x (mlv x ﬁ) KA =0 (3.8)

Equation 3.8 is a vector differential Helmholtz equation. For anisotropic materials
the relative electric permittivity e (and possibly the relative magnetic permeability
w which is usually close to 1 for optical materials) and hence the refractive index
are tensors. After taking into account the boundary conditions, the software refor-

mulates this equation into a generalized eigenvalue equation of the form of
Ap— N\, Bp, =0 (3.9)

where A and B are system matrices. The interested reader is referred to [45] for

more details. The system is solved for N eigenvalues ), (generalized eigenvalues
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of A and B) with n = 1..N which make the determinant A — )\, B vanish. The
propagation constant 3 or the effective refractive index neg = SA/(27) of a mode
can be specified as the eigenvalue of the calculation. For the calculation of losses, the
eigenvalue equation 3.9 has to be solved for complex values. Once the effective index
neg of the mode is found, the losses a in dB/m are calculated from the imaginary

part of neg by
20 Im(new)

‘Inl0 N

In the following, the described eigenvalue problem is solved using the commercial

a =27 dB. (3.10)

software COMSOL Multiphysics which is based on the finite-element method.

3.2 Finite Element Calculations with COMSOL Mul-
tiphysics

The goal of this section is to introduce the methods used for simulations of optical
fibers to the interested reader. An overview on how such simulations are structured
is given and experienced reader will notice which parts are especially important for
the calculation of fiber modes. Because the focus of this work are the results of
the simulations and the experiments, the readers are referred to the handbook of
COMSOL Multiphysics [44] for further details to repeat the simulations.

The finite-element method (FEM) is a numerical method used to solve differential
equations. A domain is divided into a finite number of small elements on which
ansatz-functions are defined. The differential equations can then be solved for each
element using a functional Ritz or a residual Galerkin method [46]. The FEM was
first proposed in the 1940s and was applied to structural aircraft design in the 1950s.
Since then it was increasingly applied to other fields. For the electromagnetic mod-
eling, the invention of so called vector or Nedelec elements [45] was important to
overcome problems such as the occurrence of non-physical ("spurious") modes, dif-
ficulties with conducting and dielectric edges and corners due to field singularities,
and the many boundary conditions to be applied to interfaces and surfaces.

The commercial software COMSOL Multiphysics can be used to define arbitrary
geometries and couple different physical problems such as the calculation of electro-

magnetic eigenmodes and the application of mechanical stress.
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The basic steps of simulating with COMSOL Multiphysics are
e Definition of the type of problem (e.g., electromagnetism, hybrid-modes, ...)
e Definition of global parameters (e.g., coordinates, wavelength, ..)
e Implementation/drawing of geometrical objects (domains and subdomains)
e Definition of the type of interface between the domains
e Definition of boundary conditions

e Selection of interpolation functions (first (linear), second (quadratic) or higher-

order polynomials)

e Selection of an appropriate solver, definition of solver settings, and starting

values

e Discretization or subdivision of the domains (meshing) with a fine mesh of
lines/triangles/tetrahedra (node or vector elements), description of a node
containing coordinate values, local number (pos. in the element), global num-

ber (pos. in entire system)
e Formulation of the system of equations (Ritz-Galerkin method)
e Solving of the system of equations and calculating desired parameters
e Postprocessing

In this work this procedure is applied to optical fibers. Since the fiber modes in
an ideal (straight) fiber do not change during propagation along the fiber axis, the
modes can be calculated with a single 2-dimensional (2D) fiber cross-section. The
simulation of bent fibers will be described in section 3.2.2. The COMSOL "RF-
Module" (radio frequency module) is used with space dimension 2D. Because the
light within the fiber is traveling perpendicular to this plane, the "Mode Analysis"
of "Hybird-Mode Waves" in the "Perpendicular Waves" folder is selected. This tells
COMSOL that a wave, of the form of equation 3.7, propagates in the z direction
and that the Helmholtz equation 3.8 has to be solved for the eigenvalue.

Then, the global parameters (e.g., wavelength, bending radius,..) are given, the

fiber cross-section is drawn, material properties (refractive indices) are defined, and
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a "Continuity"((7 x H)H = 0; (it x E)E = 0) interface condition is used between
the different domains.

The fiber is usually surrounded by a perfectly matched layer, which will be ex-
plained in the following section, to calculate the losses. The total domain of the
simulation is enclosed with a "Perfect Electric Conductor" (PEC) (i x E = 0)
boundary condition. Hybrid elements are used to represent the interpolation func-
tions (shcurl(2,’Hx') Hy')shlag(2, hz') for such an element of order 2 (quadratic)
in the COMSOL notation). They consist of conventional node-based interpolation
functions for the longitudinal and edge-based vector functions for the transverse
components of the field vectors.

Spurious modes were observed when solving such equations with the use of first-
order vector elements even with a fine mesh. The use of second-order mesh elements
eliminated these unphysical solutions. Most of the time, the "SPOOLES" solver,
which takes advantage of symmetric and Hermitian systems was used because it is
more memory efficient than the fast default "UMFPACK" solver. COMSOL then
formulates the system of equations and solves it according to the settings of the
solver. Most of the calculations presented in this thesis were formulated as such an

eigenvalue problem.

3.2.1 Using and Optimizing Perfectly Matched Layers

Considering lossy waveguides (e.g., LCFs, BFs, bent fibers,..) leads to the problem
that light will be able to escape the fiber core and couple to cladding or radiation
modes. The problem is an open boundary problem because there is no natural
boundary around the fiber. To treat this open boundary problem within a finite
computational domain (the size of the simulated region (e.g., in pm?) is limited by
the random access memory (RAM) of the used hardware), an artificial absorbing
layer can be implemented. The aforementioned PEC (7i x E = 0) boundary con-
dition could be used to truncate the simulated region, but this leads to unwanted
artificial reflections at the interface and even total reflection depending on the angle
of incidence of the electromagnetic wave.

Introducing a perfectly matched layer (PML) [47] between the fiber and the PEC
can strongly reduce this reflection. The easiest way to understand the purpose of
an PML is to think about it as an artificial anisotropic absorbing material [48]. An

equivalent but more general approach is the so-called stretched coordinate PML
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[49]. Tt is based on a coordinate transformation in which one or more coordinates
are mapped into complex numbers. As a result, oscillating (propagating) waves are
replaced by exponentially decaying waves.

To take advantage of the cylindrical shape of optical fibers within the framework of

the Cartesian basis (x,y, z) of the FEM solver, new coordinate functions defined as

r=+/x?+y? and (3.11)

x
¢ = (sign(y) + 1 — [sign(y)]) - arccos = (3.12)

r
were implemented for the simulations in this work. To achieve the attenuation of
a wave propagating with a non-zero radial component inside the PML, the radial

coordinate r is transformed to [45]

7= /UT sp(r)dr (3.13)

where s, is the radial stretching coordinate. For the simulations, a circular PML
with the thickness dpyy, was considered at a distance of rpyyp, from the center of the
fiber (usually the center of symmetry). Therefore, the radial stretching variable s,
can be written as [45]

1 o forr < rpup
(3.14)

e Spr — 18y (my o forr > rpay
i \ “dpw

The real part s, of s., which attenuates evanescent waves if s.. > 1, is set to 1.
The damping constant s,; is optimized to attenuate outward propagating waves.
The stretching variable s, has to be defined at the border between the PML and the
actual (physical) region of interest, but it does not matter at which part of equation
3.14 the equal sign is introduced (r < rpyyp, or 7 > rpyr)-

In theory, this leads to a reflectionless damping of outward propagating waves, but
the discretization of the FEM leads to "numerical reflections". Using a thicker PML
region reduces this numerical reflections but increases the calculation time and mem-
ory consumption of the simulation. Various simulations with different thicknesses
dpnp, were carried out. It was found that stable and reliable results are obtained
with a PML thickness of dpy, = 10 pm. Therefore, for further calculations dpy,
was always set to 10 pm.

To show the influence of the damping constant s,;, the results of a series of simula-

tions of a straight Bragg fiber are shown in figure 3.1. The obtained losses depend
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on the damping constant s,;. For s,; = 3 the curve has an absolute maximum be-
cause at this value the numerical reflections are minimized (for a PML with 10 pm
thickness) which leads to the optimal value of s,; used for further simulations. How-

ever, this value should be optimized for every simulation individually. As mentioned
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Figure 3.1: Effect of the variation of the damping constant s,; on the calculated losses

for a 10 pm thick perfectly matched layer.

earlier, another way of understanding the PML is to think about it as an absorb-
ing material. It is possible to hide the coordinate transformation into material-like
properties of the PML region. The permittivity e and the permeability u of the
PML are modified to

oD (3.15)

e = el (3.16)

-
=

with a transformation matrix 7% [45] given by the radial stretching variable s,

1/s, 0 0
=1 0 s 0 (3.17)
0 0 s,

which is expressed in a cylindrical coordinate (r, ¢, z) system. This tensor has to be

transformed to the Cartesian coordinate system of the FEM-simulation by

T=RIR™ (3.18)
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with the transformation matrix R

A cos(¢) —rsin(¢) 0
R= | sin(¢) rcos(p) 0 | - (3.19)
0 0 1

The matrix T in the Cartesian basis can be written as

i cos® ¢ + s,sin® ¢ cos psing <i — 5T> 0
T=1 cos ¢ sin ¢ (i - 5T> i sin ¢+ s.cos?¢p 0 (3.20)
0 0 S

which can be implemented in the geometrical subdomains of the simulation.

With these coordinate transformations, the fields and the full vector wave equations
can still be written in the form of the equations 3.7 and 3.8. Therefore, the avail-
able Maxwell-solvers can be applied without any changes which represents a great

advantage.

3.2.1.1 Benchmarking Different Perfectly Matched Layers

To find a suitable PML representation for the simulations performed within this
work, several PML concepts were compared. Figure 3.2 shows the examples of
a rectangular and a circular PML surrounding a Bragg fiber implemented as an
additional domain within the simulation.

The different PML concepts were tested by implementing and replacing one after
the other within the same model. A simulation of a BF with four high refractive
index layers in the cladding was chosen as a benchmark (A = 1yum, 7, = 12.5um,

a=1pm, b=4um, n., = n, = 1.45, n, = 1.47).

Type Re(nes) Im(neg) - 1012 | Loss £2
Rectangular PML according to [49] 1.4499069322000 1.025612 0.052311
1. Circular PML according to [50] 1.4499069321385 0.1492794 0.007614
2. Circular PML pre-installed in Comsol 3.3 | 1.4499069321350 0.6978973 0.035596
3. Circular PML according to [44] 1.4499069322678 1.287712 0.065680
Analytical TMM 1.4499069322960 1.368332 0.069792

Table 3.1: Comparison of the results of different PML implementations to an analytical

solution.
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Figure 3.2: Scheme of a rectangular and a circular PML with thickness dpy, surrounding
a Bragg fiber. Different damping constants (S;;,5,;) along the Cartesian

coordinates can be implemented in the rectangular PML.

Table 3.1 shows the calculated losses of the fundamental mode using the different
PMLs. The FEM results are compared to the result of a calculation with a transfer
matrix method (TMM) [30]. The TMM treats layered media by a system matrix
which is used to calculate the reflection and transmission of an initial field. There-
fore, it is commonly used for the design of plane dielectric multilayer coatings or in
this case for the calculation of modes in cylindrically symmetric Bragg fibers.

All PML concepts result in lower confinement losses compared to the TMM re-
sult. This can be explained by unwanted reflections in the PML. The three circular
PML implementations were all much faster (in this case by more than one order of
magnitude) in terms of calculation time than the rectangular PML which was intro-
duced earlier by Chew and Weedon [49]. The PML which is already implemented in
Comsol Multiphysics 3.3 was fast, but the possibilities for optimizing this PML are
limited. In many calculations this PML gave loss values which were roughly a factor
of two lower than the values given by the TMM. The 3. circular PML was defined
according to the COMSOL Multiphysics Electromagnetics Module User’s Guide [44]
and should be similar to the one already implemented in the COMSOL 3.3 software,
but in contrast to this PML the user defined version can be optimized by a varia-
tion of the damping constant s,; as shown in the previous section. Because of that,
the values of real and imaginary part (and hence the losses) obtained with the 3.

circular PML concept are close to the values obtained with the TMM.
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Figure 3.3 shows the calculated bending losses of the same fiber using the three
circular PML techniques. The simulations using the Comsol PML (black diamonds)
resulted in a peak at a bending radius of R = 20cm. The PML used by Viale et al.
[50] (red circles) exhibited a kink at R = 10cm. Such artifacts were observed for
other fibers as well even in the simulations of step index fibers.

The best performance was achieved with the 3. circular PML (blue spheres) defined
according to [44]. The results obtained with this PML show a smooth and continu-
ous increase of the bending losses with decreasing bending radius R. The mesh used
for the simulations was the same for all the calculations.

As a result of this benchmark, the PML already implemented in the software was
utilized for basic investigations of the specialty fibers because it is fast and conve-
nient to use. For more accurate results, the 3. circular PML concept was used in

further analyses.

Bending Loss (dB/km)
~

e
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) 10 » - X :
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Figure 3.3: Calculation of the bending losses of a BF to compare the performance of
different PML techniques. The results obtained with the PML according to
[50] are indicated by red rectangles, the Comsol Multiphysics 3.3 PML by
black diamonds, and results obtained with the PML defined according to [44]

are indicated by blue spheres.
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3.2.2 Modeling of Bending Losses

With the help of the PML concept it is possible to efficiently calculate losses. As
a next step, fiber bends are taken into account. An eigenmode of a fiber does not
change its shape or propagation constant during its propagation along the fiber as
long as there are no perturbations as introduced by fiber bends.

However, if the bend has a constant curvature, the eigenmodes of the bent fiber do
not change along the propagation of the bent section which means that the eigen-
modes can be calculated again with just one 2D slice of the fiber. If the curvature is
not constant, the problem can be divided into several parts with piecewise constant
curvature.

The bend (or curvature) can be taken into account by the equivalent index model
[51, 52, 53] which is described in the following.

3.2.2.1 The Equivalent Index Model for Bent Fibers

Straight fiber Bent fiber

Bending
Mefr_ ]-——I— Radius R
) E |

—_—

Equivalent Refractive Index Profile

Figure 3.4: Principle of the equivalent index model used to simulate bent waveguides
in a 2D-environment. The distribution of the refractive index of a straight

waveguide is transformed to take into account the curvature.

From an electromagnetic point of view it is possible to calculate the radiation losses
of a bent fiber in a 2D model without any approximations. D. M. Shyroki de-
rived modified expressions for the permittivity e and the permeability p from first-

principles [53] to replace the ones of the straight waveguide. Because the modifica-
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tion of the transverse components ([, flyy, €z, €yy) and the longitudinal compo-
nents (ji.., €,,) are different, the modified permittivity é, and permeability j,. have
to be written in a tensor form even for isotropic materials.

However, for all structures and bending radii of interest for this work, the influence
of the z-components is negligible [53]. Therefore, the tensors can be reduced again

which results in the well known Marcuse formula [51, 52|

T
R=n-4/1+2— 21
NRr n + R (3 )

where ng is the new equivalent refractive index of the bent fiber, n is the refractive
index of the material, and R denotes the bending radius along the x-coordinate z.
This equation can be modified to take into account the bend-induced change of the
refractive index of the material which can be described in terms of an effective bend
radius Reg to represent the stress-optical effect [54]. In a first-order approximation,

the refractive index change can be written as

T T
np=mn-4,/1+2 ~n , 3.22
f Reff (Reﬁ"> ( )

with Res = 1.28 - R for silica fibers [54]. Within this model the refractive index
profile of a bent fiber can be drawn as a tilted version of the refractive index profile

of the straight fiber as indicated by figure 3.4.

3.2.2.2 Modes in Bent Fibers

As described above, a bent fiber is equivalent to a straight fiber with a modified
refractive index as stated by the equivalent index model. Therefore, 2D-eigenmode
simulations can be used even for bent waveguides, but the modified index has an
impact on the mode structure of the fiber.

In general, the modes of a straight fiber are deformed by a bend in a way that
their fields are shifted towards the higher refractive index which corresponds to the
opposite side of the center of the curvature. Figure 3.5 shows the calculated lowest-
order modes of an ideal SIF with a NA of 0.06 and a core diameter of 30 pm. If
the fiber is kept perfectly straight, 4 core-guided LP-modes (see chapter 2.2.2 for
the classification) are supported. The modes can be classified in terms of HE-modes
as well, giving more information about the polarization in case of the degenerated

modes. However, if the fiber is bent, even slightly, the mode structure changes. If
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a curvature of R = 0.2m is simulated with the help of the equivalent index model,
only linearly polarized modes are found in the results. Hence, it is less meaningful
to use the HE-classification scheme. Azimuthally or radially polarized ring-shaped
modes do not appear in bent step index fibers according to the simulation result.
An experimental investigation of this effect is described in chapter 7. In case of
LPox-modes, the bend shifts the center of gravity of the mode and deforms the
mode shape. The more the fiber is bent, the larger is the shift and the deformation
[55]. In case of the LPxj-modes, the ring-like shape of the field distribution is lost
due to the bend.

Another feature already visible in this figure is that less well guided modes can be
attenuated by bending the fiber. The LPg-mode, well guided in case of the straight
fiber, becomes lossy if the fiber is bent. A large part of the mode field penetrates
into the cladding causing high losses. As implied by the different field distributions
of the two LPgp-modes, the losses may significantly become polarization dependent
close to a critical value of the bending radius. In the case discussed here, the fiber is
bent in the x-z-plane and the resulting losses of the x-polarized mode are 19 dB/m,

whereas the losses of the y-polarized mode are 241 dB/m according to the simulation.
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Fiber Bent with
R=0.2m

Fiber Not Bent

Figure 3.5: Calculated field distributions of the lowest-order modes of a step index fiber with 30 pm core diameter and NA — 0.06. If

the fiber is bent (R = 0.2m), only linear polarized LP-modes are obtained.
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3.2.3 Customizing the Simulation

As discussed above, fiber bends can easily be simulated with the help of the equiva-
lent index model and losses are obtained with the help of perfectly matched layers.
Furthermore, complicated fiber cross-sections can be drawn with computer-aided
design (CAD) tools. However, for the convenience of numerical modeling,more vari-
ables and equations have to be implemented to avoid starting a new calculation each
time a parameter (e.g., wavelength, bending radius,..) is changed.

The refractive indices depend on the wavelength at which the modes are calculated
and have to be changed as well if the wavelength is changed. Another aspect of
improving the simulation is to reduce the effort of the data analysis, for instance,
by directly implementing integrals over the resulting mode fields to obtain a value
for the effective mode area for each calculated mode. In the following it is described
how such features are implemented in the FEM software.

Values for the wavelength, NA, refractive indices, bending radius, PML-parameters,
and many other parameters can easily be defined in the "Constants" menu. It is
possible to enter equations as a definition for constants depending on other constants
and parameters but not on coordinates. For example, a Sellenmeier equation for the

wavelength dependence of the refractive index of pure silica [56]

”silica()\) = (1 + 06961663 . ()\ . 106)2/((A . 106)2 _ 006840432)
+0.4079426 - (A - 10%)%/((A - 10°)* — 0.1162414%) (3.23)
+0.8974794 - (A - 10%)?/((A - 10°)* — 9.896161%))"/.

Note that in order to make the simulation work with the specified constants some
definitions in the program have to be modified accordingly. In particular, the fre-
quency in the "Application Scalar Variables" tab has to be defined as ¢/\ if the
wavelength is defined as A in the constants menu.

Functions of coordinates or simulation results such as equation 3.10 can be defined
in the "Global Expressions" menu. Suitable cylindrical coordinates r (3.11) and ¢
(3.12), to define a cylindrical PML or a radially symmetric stress distribution, are
implemented as "Global Expressions". In the "Subdomain Expressions" menu, spe-
cial expressions or constants can be defined for each geometrical domain individually
which can be helpful in many applications.

If integrals should be calculated, as needed for the calculation of the mode field area

(2.41), the "Integration Coupling Variables" in the "Subdomain Variables" tab are
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the correct place to implement them. The results of the integrals can then be used
as an input for the "Global Expressions" to calculate quantities which include these
integrals.

It is often desirable to know results for a whole wavelength range or the bending
losses for different radii without calculating each value by changing the parameters
manually. With the COMSOL Multipyhsics version 3.3a, a submenu "Parametric
Sweep" was added to the "Solve" menu, which can easily be used to automatize
calculations depending on non-structural parameters. Before the version 3.3 of
COMSOL Multiphysics, Matlab had to be utilized. To change structural param-
eters Matlab is still a practical tool to use with the later versions of COMSOL
Multiphysics.

3.2.4 Matlab Interface

The COMSOL Multiphysics software can be connected to Matlab, a commercial pro-
gramming language, especially to solve mathematical problems. Thus, parametrical
sweeps can be programmed. Furthermore, it can be useful to program an interface
in which structural parameters like radii and layer thicknesses can be directly en-
tered instead of drawing the fiber structure in the COMSOL interface to performed
structural changes faster.

Matlab was used as a standalone program as well. A Matlab based software tool [57]
was adapted and used to calculate modes and losses of BFs in addition to the FEM.
The tool uses a transfer matrix method (TMM) [30] which allows the calculation of

modes for straight and circular symmetric fibers.



Chapter 4
Experimental Methods

In this chapter, the experimental methods used to characterize optical fibers are
explained and details of the experimental settings are given. First, the preparation

of the fibers for these measurements is described.

4.1 Fiber Handling

A fiber has to be carefully prepared before it can be characterized in order to obtain
reliable results. The fiber end faces have to be clean and flat. Therefore, the fiber is
stripped, which means the coating is removed from the fiber ends, either by heat (a
flame or hot air blower), by a mechanical fiber stripping tool, or by using acetone
to dissolve the polymer from the glass. The bare fiber is then cleaned with alcohol
and within this work cleaved with a Vytran LDC-200 automated fiber cleaver.

Figure 4.1 shows the functional part of this machine. In the case of all-solid fibers,
mainly the outer diameter determines the cleave parameters. However, the cleave
parameters have to be optimized for each fiber individually especially for fibers
containing air holes. The prepared fiber ends can then be placed on multi-axis

nano-positioning systems to couple light in and out of the fiber.

4.1.1 Mode Stripping

Since the overlap of the free space mode and the fiber mode is never exactly 100% and
because of imperfect coupling conditions (imperfect optics, alignment errors) some
light will not be transferred to the fundamental mode of the fiber and may excite

cladding modes. This light may affect the measurements and has to be removed.
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exchangeable diamgas
groove

Figure 4.1: Functional part of the Vytran LDC-200 automated fiber cleaver.

If the fiber coating is of higher refractive index than the cladding, the situation is
relaxed because light will not be guided in the cladding. For low-power investigations
it is enough to use (Scotch) tape to fix the fiber ends onto the experimental setup
which at the same time works as a cladding mode stripper. Mode matching liquid
(i.e. glycerin) can be used but it has certain drawbacks. Since it is liquid the
wetting of the fiber changes with time and because glycerin is hygroscopic it reacts
with the humidity of the air which changes the refractive index. Both leads to
unstable experimental conditions. For high-power experiments the fiber cladding
can be etched with glass etching liquid to generate a rough surface which scatters
the light out of the cladding.

Fibers with a low-index coating (e.g., silicon) are more problematic because it leads
to TIR in the cladding. In addition to the use of scotch tape and etching to strip
the cladding modes, they can be separated from the core-guided light after the fiber
by selecting the NA of the core-guided modes. Another possibility is to image the
fiber end face and to use a suitable aperture to discard the light coming out of the

cladding.

4.1.2 Applying Bends to Optical Fibers

Usually, experimental conditions require straight fiber ends, but the fiber is arranged
on an optical table and coiled with a large radius to fit the several tens of meters in
the lab. This leads to many different fiber sections with different radii of curvature.

Besides the intentionally defined bends to investigate the bending losses, these radii
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should be as large and smooth as possible in order to minimize their influence on
the measurement result. If such care is taken, the output power can be measured
as a reference for a "straight" fiber P,,,(R — o0) and the bending losses ap caused

by a single loop with radius R can be obtained by

Pout(R)
. 1010g(2p;u;3(3%0>) B (41
where P,,;(R) is the measured output power.
If a certain bending radius R is investigated, the transition from the straight (or
large radius) part of the fiber to the curvature under examination is crucial because
the modes are different in those regions and mode matching losses may arise (see
chapter 2.3.1). To avoid these mode matching losses all the transitions have to be
smooth, which implies, that a large part of the fiber in the setup has to be slightly
moved for each new radius investigated. This is a factor which reduces the repro-
ducibility of the measurement.
Additional problems occur for fibers with small cladding diameters (e.g., 125 pm)
especially with silicon coating. The adhesion of the fiber to the table makes it more
difficult to achieve smooth transitions of the bending radii. For larger diameters
(>250m), lifting the fiber slightly is sufficient to avoid kinks because of the stiff-
ness of the fiber.
The bending radius can be controlled by wrapping the fiber on mandrels with speci-
fied radii or by using free loops. The results depend on the way the bend is applied.
Figure 4.2 shows 3 different methods. If the incoming fiber is oriented tangentially
to the mandrel (method 1) higher losses occur compared to the other methods.

Due to the abrupt change of the bending radius, method 1 leads to mode matching

Method 1 Method 2 “Method

Figure 4.2: Different methods of applying defined bends to a fiber.
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losses in addition to the bending losses. With a smoothly varying bending radius
from R = 00 to R = Rpandrel, the mode can adapt adiabatically (method 2) which
prevents mode mismatch.

The third method uses free loops without a mandrel. A printout on paper with
distinct circles is used as a template to fit the fiber to a certain radius. In general,
this method also prevents mode matching losses, but the shape of the curvature
("roundness" of the free loop) depends on the diameter of the fiber cladding. This
makes the comparison of different fibers more difficult, and the reproducibility of
the experiments with method 3 turned out to be lower than for the other methods.
Method 3 was therefore only used for large radii (R > 0.2m) for which no mandrels
were available and the deviations in curvature due to the fiber stiffness is less pro-
nounced.

Figure 4.3 compares the results obtained with the methods 1 and 2. The test fiber
was a low-NA step index fiber with a core diameter of 30 pm. All displayed points
are mean values of three different measurements. As described above, method 1
results in higher losses due to mode mismatch at the critical transitions of straight
and bent fiber parts. The two curves in figure 4.3 have the same line shape, but
they have a mean offset of about 9%. This offset is different for other fibers, it can
be almost zero (as in the case of the 19-core fiber (chapter 5.1.2)), or, as high as
34% (as in case of the BF180 fiber (chapter 5.2.3)). The relative standard deviation

(RSD) of N measurements of the bending losses ag in % is given by

SNV (am(R) = m(R))?2

RSD = ()

-100 (4.2)

where m(R) = 1/N Z]nvzl Ay (R) is the mean value of N measurements.

For the bending losses of the step index fiber described above, the RSD is 6.81%
for method 1 and 5.07% for method 2. The RSD is different for other fiber types,
but always similar for both methods. Usually, method 3 leads to very large values
(e.g., twice as high as for the other methods). Because of the differing influence of
the mode mismatch for different fibers and the resulting problems when comparing
different fiber types, only the results obtained with method 2 are shown in the

following chapters.
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Figure 4.3: Results of the bending loss measurements of a low-NA step index fiber with
a core diameter of 30 pm. Bending method 1 (red triangles) results in higher
losses than method 2 (black circle) due to a mode mismatch at the points

where the straight fiber is abruptly bent with a radius R.

4.2 Experimental Setup

Most of the measurements have been performed with light of low temporal coherence
(50 nm FWHM) from an amplified spontaneous emission (ASE) source (Multiwave
ASE) with a center wavelength of 1.05 pm and an output power of about 20 mW. This
source is supplemented by a single frequency tunable diode laser (Sacher Lasertech-
nik). Both sources are fiber coupled and can be exchanged by plugging them to a
collimation package (Thorlabs).

As shown in figure 4.4, the collimation package is placed on a kinematic mount to
control the angle of the collimated beam which can then be shaped with free space
optics (polarizers, wavelength selective filters, waveplates, etc.).

A plane-parallel glass plate can be used to offset the beam and lenses suitable to
match the mode field diameter of the fiber with the free space beam are used to
couple the beam to the fiber under test. The fiber end is adjusted to the beam with
a nano-positioning system (Thorlabs Nanomax). A large space is used to arrange
the fiber in large circles on the table. The remaining fiber end is then placed to
measure the transmitted power. Usually, the beam is again collimated to measure

near- and far-field distributions with the help of a measurement setup using CCD-
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cameras (as presented in section 4.2.2), or, to measure the beam caustics with a

Spiricon M?-200 to obtain the beam propagation factor M?.

4.2.1 Automated Coupling

To conveniently speed up the process of coupling the free space beam to the fiber
and to increase the reproducibility, a three-axis nano-positioning system (Thorlabs
Nanomaz 300) with stepper motors was used to automatize the process. The travel
of each axis is 4 mm, the accuracy is specified with 1 um and the reproducibility with
0.5pm. The programming language Labview was used to control the positioning
system with the help of a BSC103 Three Channel Stepper Motor Controller and an
optimization algorithm to maximize the transmitted power [58].

First, the program scans a certain rectangular area with the fiber end to find a initial
signal which can be used for optimization. The signal is detected with a photodiode
behind the fiber. The signal of the photodiode is read out with the help of a Keithley
KUSB-3108 data acquisition module which is connected to a USB-port. First this
signal is optimized with an improved Hill climbing algorithm in x and y direction
then the focusing (z-axis) is improved [58]. After changing the z-position, the x and
y direction is optimized again. The fine tuning is achieved by an optimization loop

with variable motor step size until a termination condition is reached.

4.2.2 Near- and Far-Field Characterization

Several different experimental setups to measure the near- and far-field images of a
beam delivered by a test fiber were used. Here, only the most advanced version [59]
is described as schematically drawn in figure 4.4 (NF-FF-setup).

The fiber end face is placed on a 3-axis positioning system and aligned to inter-
changeable collimation optics. Far-field apertures can be used to restrict the NA of
the collimated beam by blocking high NA parts which allows to measure the amount
of power transported within a certain NA. A highly reflecting (HR) mirror can be
used for high-power applications to redirect most of the power to a water-cooled
beam dump. For low-power beams an anti-reflection (AR) coated glass plate with
the same thickness is used to ensure the same beam path of the transmitted part of
the beam. Two folding mirrors are applied to make the system compact. Two filter

wheels can be used to comfortably control the intensity on the CCD-cameras.
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The near-field is imaged to the position of a rotatable plate with holes of different
sizes, which can be used to select a certain area (NF aperture),for example, to select
only core-guided light while blocking the light propagating in the cladding.

A 50/50 beam splitter divides the beam in a near- and a far-field path. Flip mounts
are used to apply different sets of optics to change the magnification in both arms. A
higher magnification is used for (close to) diffraction-limited beams and a lower one
is used for MM beams with a high NA to image NF and FF onto the two cameras.
A Labview program can be used to display the camera images. The integration
time and the amplification can be adjusted and an area can be defined in which the
image of the beam cross section is analyzed. The diameters of the near- and far-field
distributions are determined according to the 2nd moments method (2.84). Both,
the beam propagation factor M2 and the NA can be calculated with these results.
A flip mirror can be used to redirect the collimated beam for additional measure-
ments. For instance, the beam can be redirected to a photodiode or powermeter to
measure the transmitted power which allows to measure the ratio of power transmit-
ted in the core and the cladding by using suitable NF-apertures. To determine the
amount of power which is transported within a certain NA, the FF apertures can
be applied. The beam can also be directed to other measurement tools such as the

Spiricon M?-200 which performs very precise measurements of the beam caustic.

4.2.3 Measurement of the Beam Caustic with the 1/%-200

By measuring the beam diameter at several positions to determine the beam caustic
according to ISO Standard 11146 [27], a more precise measurement of the beam
propagation factor M?, than with the help of the NF and FF, can be achieved.
At least 10 measurements have to be taken; half of them within the range of one
Rayleigh length (25 = 7w?/A) on both sides of the beam waist w and the other half
at least two Rayleigh lengths away from the waist.

A commercial beam analyzer (Spiricon M2-200) is used for this purpose. A curve
fit ensures an accurate determination of the beam waist w and the divergence angle
O to calculate the beam propagation factor M?2. A periscope is used to align the
beam to the M?2-200. Further ND-filters and prisms can be applied to decrease the
power on the highly sensitive camera. A suitable lens (usually about f = 500 mm)
is used to ensure a beam waist inside the device. Two movable mirrors are utilized

to image different locations of the beam on a 12 bit camera as sketched in figure 4.4.
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4.2.4 Cutback Method

The bending losses of a fiber can be measured by comparing the power transmitted
through the bent fiber to the power transmitted through the straight fiber (or kept
with a sufficiently large radius). It has to be ensured that the coupling efficiency
does not change between these measurements. To measure the attenuation of the
fiber itself, the power transmitted through a long piece of fiber is measured.

Subsequently, this fiber is cut in such a way, that just a short piece is left without

disturbing the fiber entrance face where the free space measurement laser is coupled
Pshort

in. By comparing the power transmitted through the short part P to the power

transmitted through the complete fiber Pzzz‘g and measuring the length of the cut

part (L!"9 — [short) the attenuation in dB/km can calculated by
short lon,
10 log( Lt =Fail”
= Llong _ Lsh,ort dB (43)

where the length is given in km.
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Chapter 5
Investigation of Specialty Fibers

Several specialty fibers were designed and optimized using the simulation tools de-
scribed in chapter 3. Some of the fibers were produced at the IFSW others were
obtained from specialty fiber suppliers or collaboration partners. The fibers were
characterized with the experiments described in the previous chapter.

Within the present chapter the results of simulations and experiments are compared
and discussed. Different wavelengths are stated in this chapter since some fibers
were optimized for thin-disc lasers (with 1030 nm wavelength) and others for fiber
lasers (with a wavelength of about 1080 nm). Mainly a broadband ASE source with

a center wavelength of 1050 nm was used for the characterization of the fibers.

5.1 Multicore Fibers

The idea behind the multicore approach is to arrange several cores in a way that
they will couple with each other. The modes of such a multicore fiber will be
distributed over the whole core array which increases the mode field area compared
to the eigenmodes of the individual cores. The eigenmodes of the coupled cores are

so-called supermodes.

5.1.1 Principle of Coupled Waveguides: 2 Coupled Cores

The coupled-mode theory [29] suggests that the fields within different cores can
evanescently couple either in phase (symmetric) or with a 7-phase shift referred to

as antiphase (antisymmetric). In general, this leads to 2N supermodes for a number
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of N single-mode cores. To understand the concept, it is helpful to consider the

\ p.

simple case of only two cores.

Figure 5.1: Symmetric (left) and antisymmetric (right) coupling of 2 SM waveguides
(fiber cores) at core-to-core distances of 40, 25 and 10pm. The optical in-
tensity is displayed in a gray scale picture together with a curve along the

cross-section which intersects both cores.

Figure 5.1 shows the calculated optical intensity (oc ’E‘Z) of the eigenmodes of two
identical cores with r., = 0.5 pm, which are coupled within a common cladding of
pure silica, for different core separations. The cores have a NA of about 0.24 and a
wavelength of 1m was assumed for the calculation.

As expected, the fields can couple symmetrically, as shown on the left side, or

antisymmetrically, as shown on the right side. The curves plotted on top of the
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gray-scale intensity distributions illustrate the intensity distribution along the axis
through the center of the two cores. In the case of symmetric coupling, the optical
intensity between the two cores is increased, whereas, due to the symmetry, there
has to be position of vanishing intensity in the case of antisymmetric coupling (un-
less the distance of the cores becomes too small as in the case of 10 pm separation).
At large separations, the symmetric as well as the antisymmetric supermodes are
well confined in the region of the cores. The supermodes can then be expressed as
superpositions of the fields of the single cores as expected from the perturbation
theory briefly described in chapter 2.4. This theory can be used to describe weakly
coupled waveguides. However, if the core separation is reduced, in the example
shown here from 40 to 25 um, the situation changes. The symmetric case is still well
confined, but in the case of antisymmetric coupling the field is decaying much slower
into the cladding. This mode can no longer be described as a simple superposition
of the fields of the single cores as described by equation 2.59. Perturbation theory
cannot be applied, and numerical methods have to be used.

The simulations showed, that in general the in-phase supermode has a higher ef-
fective refractive index than the anti-phase mode and is therefore better confined
and less sensitive to distortions such as bends. On the other hand, the confinement
of the anti-phase supermode is reduced compared to the eigenmode of a single un-
coupled core. Reducing the distance between the cores further eventually results in
a situation where only the in-phase supermode is confined, whereas the anti-phase
mode cannot be considered as a core-guided mode anymore. The strong coupling of
the two SM waveguides resulted in only one supermode with a much larger mode

field area.
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5.1.2 19-Core Fiber

The results described above suggest that it is possible to make a multicore fiber
which guides only the fundamental in-phase supermode. Therefore, a design with
19 identical SM cores was developed in order to achieve a large mode field area while
keeping the fiber SM [60].

Figure 5.2 shows a picture of the fiber end face taken by a microscope (LHS) while
the other end of the fiber was illuminated with white light. Additionally, the cores
can directly be observed with the help of a scanning electron microscope (SEM).
Each single core has a diameter of 2pum and a NA of 0.108. The center-to-center

distance is 5.5 pm and the cladding diameter of the fiber is 250 um.

Figure 5.2: Microscope photograph (LHS) of the fiber end face and a scanning electron
microscope (SEM) picture (RHS) of the core region of a SM fiber consisting

of 19 coupled cores.

Increasing the number of cores and reducing their cross sections allows to extend
the mode field area Ayr and to improve the coupling to free space Gaussian beams.
The calculated and measured NF intensity distributions of the transmitted beam are
shown in figure 5.3. The measurements are in good agreement with the calculations.
Curves of the intensity distributions along the dashed axes are shown as solid lines.
Their Gaussian fits are superimposed as dotted lines to demonstrate that the in-
phase supermode exhibits a good overlap with a Gaussian beam.

As a result, the fiber can be used like a standard SM fiber without the need for
mode conversion or lens arrays. Simulations of butt-coupled fibers with the same
Aegr showed, that the overlap of the fundamental mode of a step index fiber and the
supermode of the 19-core fiber can be higher than 99%. If the 19-core fiber is spliced
to a SM fiber laser, this will be an essential requirement to achieve efficient coupling.

For the 19-core fiber a resulting NA of 0.028 and an Az of 465 pm? were determined
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measured measured

Figure 5.3: Calculated and measured intensity distributions of the NF and the FF of the
19-core fiber. Line scans along the two dashed axes are plotted as solid lines

and Gaussian fits as dotted lines.

from the measured near- and far-field pictures. These values are very close to the
expected values of NA = 0.03 and A = 470 pm? given by the simulations. The FF
distribution (figure 5.3) is essentially Gaussian.

The 19-core fiber was first produced by the Institut fiir Photonische Technologien
e.V. (IPHT) in Jena. In a second production run the fiber was produced by the
company Fiberware and the IFSW as well.

The measured as well as the simulated losses versus the varying bending radius are
shown in figure 5.4. Again, the measurements (filled symbols) are in good agreement
with the theoretical predictions (open circles). The fiber produced by Fiberware
showed the highest bending losses. For small bending radii, the measured losses
are lower than predicted by the calculations. This may be attributed to the elasto-

optical effect (chapter 2.3.1) which was not taken into account in this simulation.
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Figure 5.4: Measured (filled symbols) and calculated (open circles) bend-induced losses

of 19-core fibers produced by different suppliers.

5.1.2.1 Beam Quality of the 19-Core Fiber

To verify that the fabricated 19-core fibers transport laser light with a high beam
quality, the beam propagation factor M? was measured for different lengths and
bending radii using the broadband ASE source. All measurements were performed
according to the ISO 11146 standard [27] using the beam propagation analyzer Spiri-
con M? — 200 (chapter 4.2.3). The M>-factors of all measurements were lower than
1.1. A typical result of the measurement of a beam caustic obtained after a 19-core
fiber is shown in figure 5.5. In this case, the resulting beam propagation factor is
M2 =~ ]W; < 1.03.

To further prove that the fiber is really SM and does not only preserve the beam

quality of the used laser, the heam of the single frequency laser (Sacher Lasertech-
nik) with a wavelength of 1030 nm was coupled into a coiled MM fiber (NA = 0.22,
200 pm core diameter) to produce a highly MM laser beam at the fiber exit.
The fiber end was then butt-coupled to a short piece (1.6m) of the 19-core fiber,
thus massively overfilling the core diameter as well as the NA of the multicore fiber.
Even in this case the measured M? after the 19-core fiber was less than 1.1. This
clearly shows that the fiber works as an efficient SM filter which does not guide any
HOMs.
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Figure 5.5: Measured beam caustic after the 19-core fiber. The measurement in two
orthogonal directions (green/red) reveals M?-factors of M2 ~ M7 < 1.03

and an excentricity of the beam of 1.03.

Because of the microstructured core and the resulting modulated NF intensity dis-
tribution these low M2-factors are somehow surprising. Several calculations were
performed to derive a M? value theoretically. For that purpose, the NF distribution
obtained from the COMSOL simulation was used to calculated the FF with the help
of the Kirchhoff integral (2.85).
A diffraction pattern is visible in the FF as shown by figure 5.6. However, according
to the calculation, the diffraction rings only contribute to about 0.4% to the total
optical intensity. Only because a logarithmic scale is used to show the intensity
curves along the main axes the diffraction pattern is clearly visible.
To further investigate the influence of the diffraction pattern on the beam propaga-
tion factor, the M? was calculated from the NF and FF distributions. The high-NA
parts of the intensity distribution can be cut by changing the size of the area in
which the FF is calculated to investigate the influence of the diffraction pattern.
The results of the calculations are shown in figure 5.7. For both main axes, the
calculated M2-factor does not change much in a calculated range of 6 times the 1/¢?
beam radius. In this region the M2-factor is close to 1.03 which agrees extremely
well to the measurement shown in figure 5.5. If a larger area is considered in the
calculations, corresponding to 6 to 9 times of the 1/e? beam radius, the M2-value

increases due to the diffraction pattern.
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Figure 5.6: Intensity distribution of the FF calculated for the supermode of the 19-core
fiber showing the diffraction pattern. The red contour lines correspond to
equal intensity levels. The two curves on the right show the intensity along

the two dotted lines on a logarithmic scale.

But even if larger domains are calculated, using a FF area which contains about
100% of the power, the corresponding beam propagation factor M? is approxematly
1.25. This is a reasonable value considering the modulated NF pattern. Since the
experimental measurements are usually done using a region of interest on the cam-
era image of about 2 beam diameters, the influence of the high diffraction angles is
often not examined. Even if a region of several beam diameters is imaged on the
camera, the diffration pattern cannot be observed directly because of the limited
dynamic range of the CCD-cameras.

Cutting the diffraction pattern to increase the beam quality can be accepted form
a practical point of view because the diffraction pattern contains only a very minor
part (0.4%) of the power. It will not cause a problem for the efficiency of possible
applications. However, depending on the application, the diffraction pattern should

be blocked using an aperture.
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Figure 5.7: M?-factor calculated for the two main axes. The obtained M?2-factor depends
on the size of the area on which the far-field is calculated and therefore on
the power which is cut. Two power levels contained within a certain far-field

range are indicated by gray dotted lines.

5.1.2.2 Comparison of the Attenuation of 19-Core Fibers from Different

Production Facilities

Because of the good results obtained with the first 19-core fiber produced by the
research institution IPHT in Jena, more fibers were fabricated. The IPHT produced
a 2nd fiber and the company Fiberware was interested in the topic as well and pro-
duced another 19-core fiber. A 4th 19-core fiber was produced in house at the IFSW
by using a stack-and-draw technique. The nominal parameters were the same for
all fibers, but the different production runs led to different results.

All fibers were characterized with the same experimental setup presented in chapter
4.2. By using a collimation package with a focal length of f = 11 mm and a focus-
ing lens with f = 45mm, a coupling to a free space Gaussian beam with an high
efficiency of about 86% was achieved.

Table 5.1 shows the results of the characterization of several 19-core fibers produced
at different facilities and in different production runs. The first version, IPHT-1, al-
ready showed an excellent beam quality but the usable fiber length [ was limited due
to defects (air) enclosed in the core region. The large number of interfaces resulting
from the stack-and draw preform assembling (chapter 2.7) causes inclusions of small

air bubbles. These air bubbles in the preform resulted in long and thin air channels
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19-Core Fiber | o [dB/km]| | dx / dy [um] | M2 / M | [ |m]
IPHT-1 - 247 /257 | 1.02/1.03] 5
IPHT-2 12 254 /263 |1.07/1.14] 10
Fiberware 10.75 25.3 /259 |1.05/1.11| 180
IFSW-1 33 24.3 /25.25 | 1.01 / 1.07 | 34

Table 5.1: Experimental results of the characterization of 19-core fibers from different

manufacturing facilities and production runs.

within the fiber which disturbs the propagation of the beam. Another difficulty is
to keep all the surfaces clean during the stack-and-draw process. Impurities lead
to a higher attenuation of the fiber. This might be the reason why the measured
attenuation « shows the largest difference between the 19-core fibers from the dif-
ferent manufacturers. By using the cutback method the attenuation was obtained
by means of equation 4.3. The fiber from Fiberware showed the lowest losses of
about 10.75dB/km, the one from the IFSW exhibited the highest attenuation of
a = 33dB/km (table 5.1).

5.1.2.3 High-Power Test of the 19-Core Fiber

After it was confirmed that the beam quality delivered by the 19-core fiber is ex-
cellent and the bending losses are acceptable, the 19-core fiber was tested in a
high-power application. A fully fiber integrated system was set-up to avoid prob-
lems related to the coupling of high-power free space beams to fibers. Dust particles
might cause the fiber ends to burn and thermally induced focus shifts would require
active stabilization for compensation.

To achieve a monolithic system a tapered piece of fiber had to be used to match the
mode field of the fiber laser with the larger mode field of the 19-core transport fiber.
To estimate the effect of tapering the 19-core fiber, several simulations containing
a geometrical stretching factor F were performed. The stretching factor is defined
as ' = d'/d where d and d' are the original and the new diameter of the fiber
respectively. Figure 5.8 shows the results of the simulations. The shrinking of the
geometrical dimensions of the 19-core fiber reduces the mode field diameter (MFD)
of the corresponding supermode until a stretching factor of F' =~ 0.62 is reached.

For even lower stretching factors the MFD increases again. This behavior can be
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attributed to a reduced confinement of the propagating mode. According to this
calculations the MEFD cannot be decreased below 21 pm which is a problem because
the fiber laser contains a Ytterbium-doped fiber (Nufern LMA-YDF-20/400) with a
MFD of about 18.3pm as an active medium. Hence, the fiber laser and the 19-core
fiber cannot be matched by simply tapering the 19-core fiber.

Further calculations showed that this can be achieved by tapering a suitable step
index fiber which is referred to as bridge fiber in the following. Depending on the
stretching factor F', the MFD of the bridge fiber is indicated in figure 5.8 by the
green rthombs. As can be seen, the mode fields of the 19-core fiber and the fiber

laser can easily be matched with the help of the bridge fiber.
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Figure 5.8: Calculated MFD of the 19-core fiber for varying geometrical stretching factors
F. A tapered bridge fiber is needed in order to match the MED of the 19-core
fiber to the fiber laser source (red dotted line).

A taper based on this bridge fiber was designed using the software FIMMWAVE
from Photon Design. Figure 5.9 shows a cross section of the intensity distribution
in this device. The intensity profile of the fiber laser is slowly transformed due to
the changing MFD of the bridge fiber to maximize the overlap with the mode of the
19-core fiber.

According to this simulation about 99% of the power from the fiber laser could be

coupled to the 19-core supermode with an ideal taper and perfect fiber splices.
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Figure 5.9: Simulation of the intensity distribution inside the taper used to match the

mode field of the fiber laser source to the 19-core transport fiber.

Experimentally, a custom made taper from ITF Labs (which comprises an unknown
step index bridge fiber) was spliced between the fiber laser and the 19-core fiber
with a Vytran GPX-3400 glass processing system. A series of beam quality and
transmission efficiency measurements (not shown) were performed to examine test
splices between the different fibers to increase the efficiency of the system and help
the co-workers to optimize the splice parameters.

The experimental setup including the final splices is shown in figure 5.10. The fiber
laser was built using 8 m of active fiber coiled on a water-cooled mandrel with a
diameter of 0.1 m which was arranged between two fiber Bragg gratings (FBG).
The laser was pumped by a Laserline diode module with a nominal wavelength of
976 nm and 1.2kW of output power. By carefully aligning the coupling of the pump
light to the fiber laser, a high slope efficiency of 76% was reached up to an output
power of about 350 W [61]. To discriminate possible cladding modes, an aperture,
which selects the NA of the supermode, was used between the transport fiber and
the power meter.

Up to 356 W in a single transverse mode was delivered through the whole monolithic
system comprising the fiber laser, the taper, and 12m of 19-core fiber. The trans-
mitted power scaled linearly with the pump power. The maximum output power

was limited by the available power of the fiber laser source.
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Figure 5.10: Scheme of the experimental setup used for high-power fundamental mode
delivery. Photographs of the fiber laser a), the 2nd splice b), the water

cooled taper c), and aperture d) are shown.
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5.2 Bragg-Type Photonic Bandgap Fibers

Multicore fibers are similar to step index fibers in terms of the underlying physics
because both fiber types are based on total internal reflection between a higher re-
fractive index (multi)core region and a lower refractive index cladding region. This
situation is different for Bragg-type photonic bandgap fibers.

BFs were described in chapter 2.6.3.1 and the conditions for which the circularly
symmetric cladding layers are anti-resonant and light is efficiently trapped inside
the core are given by the equations 2.87 and 2.88. To achieve compact and efficient
fiber structures, the parameters [ and m are chosen to be 0 which results in the
smallest possible layer thicknesses according to these equations.

All simulations shown in this section are calculated for a wavelength of A = 1.070 pm.
All modeling results were again obtained with 2nd order mesh elements of sub-
wavelength size as described in chapter 3.2. In the case of BFs it is particularly
important to resolve the thin high-index layers with a very fine mesh (about \/10)
for accurate simulation results. The losses obtained by the FEM are compared to
the results of an analytical solution given by a transfer matrix method (TMM) [30].
However, the TMM is capable of calculating the modes and losses of rotationally
symmetric and straight fibers, but not of bent ones.

Because it is desired to produce the BFs with common MCVD processes, the sim-
ulations were limited to an index contrast of An = 0.02 which is achievable by
Ge-doping. The straightforward design is therefore a BF consisting of an undoped
core and undoped low-index layers with n., = n, = 1.45 and (Ge-)doped high-index

layers with n, = 1.47.

5.2.1 Influence of the Core Radius

A BF with only one high-index layer as cladding is considered first to investigate
the influence of the core radius on the propagation losses without any influence of
a cladding period. The thickness of the high-index layer is given by equation 2.87
(about 1pm). Figure 5.11 shows the losses of the fundamental mode of this BF
with varying core radius on a logarithmic scale. As can be seen, the core radius
has a large influence on the losses. Increasing the core radius from r., = 10 pm to
reo = 20 um decreases the losses by a factor of about 15. The influence is even more

pronounced for smaller core sizes.
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However, the core size cannot be increased arbitrarily because higher-order modes
will appear and the sensitivity to fiber bends increases. This shows that one high-
index layer is not enough to ensure that the losses are acceptable for beam delivery
applications. The number of high-index layers in the cladding has therefore to be

increased, which leads to further degrees of freedom in the optimization process.
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Figure 5.11: Calculated propagation losses of the fundamental mode of a BF with a single

high-index layer as a function of the core radius 7¢,.

5.2.2 Optimizing Bragg Fibers

As a next step a straight BF with a core radius of r,, = 12.5um and 4 high-index
layers is considered (as described above with n, = 1.47, ne, = ny, = 1.45). The
thickness a of the high-index layers shall still be defined according to 2.87, but the
thickness b of the low refractive index layers is varied. As can be seen in figure 5.12,
such a BF can exhibit losses of less than 2dB/km. Around the lowest loss value
at b ~ 8.25um the confinement losses are fairly stable which is convenient in view
of the production tolerances. Remarkably, this optimal value does not follow the
commonly stated formula (2.88). The qualitative behavior of the curve in figure 5.12
is the same for different core radii and different contrasts of the refractive indices.

Increasing the core radius broadens the curve and shifts it to higher values of b.
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Figure 5.12: Calculated propagation losses of a large mode area (25pm core diameter)

BF with 4 high-index layers with varying thickness b of the low-index layers.

The red dotted lines indicate the three values of b which are used for the

following comparison of the bending sensitivity.
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Figure 5.13: Propagation constant /3 in a vector picture. With the transverse compo-
nent of the wave vector k; and an anti-resonance condition the ideal layer

thickness b can be derived.
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The effort to find an explanation for the optimal value resulted in an analytic ex-

pression derived from the transverse wave vector k; (see figure 5.13)

K2 o= n2kZ— %, with2.38 (5.1)
2
k= nfokg—nszkg, WithkOZTTr (5.2)
2\ ?
ko= (7> (né, — i) (5:3)
27
kt = :‘:7 ngo—ngﬂ. (54)

As indicated by figure 5.13, an anti-resonance condition kb = 7(2m + 1)/2 with
m = 0,1, 2.. derived by considering the phase jump of a wave reflected at the inter-
face from low- to high-refractive index layers (whereas there is no phase jump at
the transition form high- to low-refractive index) can be used to obtain the optimal

low-index layer thickness for straight BFs by

b= W(kaiﬂ)/g with 5.4 (5.5)
B r(2m 4 1))2 o
N (5.7)

2 — 12
4y/np —nZy

The minus sign in 5.4 is discarded in 5.7 because only positive values of the thickness
b are physically possible. Equation 5.7 has a very simple form, but it depends on
the effective refractive index of the mode n.g which itself depends on all structural
parameters of the fiber.

However, one can design an initial structure with parameters given by equation 2.88
and calculate the effective index of the desired mode with the help of the FEM
simulation. With this effective index one can calculate an improved layer thickness
b using equation 5.7. This equation can then be used repeatedly until the layer
thicknesses and the effective index converge to stable values.

Using this approach the optimum values can be reached in a few iterative steps as
shown in table 5.2. Here, the iteration was started with a guessed value for the
effective refractive index which is supposed to be smaller but close to the refractive
index of the core (e.g., nd; = 1.44999). This leads to a thickness of the low-index
layer b given by equation 5.7. Together with the thickness of the high-index layer

a, given by equation 2.87, the structure is defined and used to calculate the modes
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with the help of the FEM simulation. The effective index from the simulation result
nlg is used to recalculate b and the geometry in the FEM simulation is adapted ac-
cordingly. A new effective index nZ; is calculated with the FEM and used to obtain
a new value for b with 5.7. At the 3rd optimization step the calculated losses are
already close to the minimal losses and the layer thickness b is close to the value ob-

tained by the FEM simulations which used a simple variation of the layer thickness

to find the optimal parameters.

Step | b Re(ne) Tm (neg) Loss [dB/km|
0 — 1.449990000 | — —

1 49.673588600 | 1.449612580 | 2.030749E-08 | 1035.78

2 7.981096590 | 1.449630348 | 3.737904E-11 | 1.90651

3 8.170637660 | 1.449630561 | 3.718923E-11 | 1.89683

4 8.172993460 | 1.449630564 | 3.718875E-11 | 1.89680

5 8.173022740 | 1.449630564 | 3.718874E-11 | 1.89680

Table 5.2: Optimization of the layer thickness of a BF by the derived optimization rou-

tine.

For the considered Bragg fiber the optimum thickness of the low-index layer de-
creases the losses by one order of magnitude compared to the conventional design
given by equation 2.88.

Even more interesting is the change of the characteristics of the bending losses with
the thickness of the low-index layer. A comparative analysis of three similar fiber
structures is shown in figure 5.14. One fiber has a low-index layer with a thickness
equal to the optimum value (green dots), one has a low-index layer with a thickness
equal to the core radius, as suggested by equation 2.88 (red dots), and one possesses
a lower value of b = 4 pm (blue dots) for which the propagation losses of the straight
fiber is the same as for the fiber with b = r,, = 12.5um (green dots).

The fiber with the highest value of b, designed according to equation 2.88, is very
sensitive to bending. Even a very large bending radius of R = 0.5m results in
losses which are nineteen times higher than the losses of the straight fiber. If only 4
high-index layers are used, the design with the largest value of b is not suitable for

flexible beam delivery systems.
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Figure 5.14: Simulated bending losses of three BF which only differ in the thickness b of
the low-index layers (a) red: b = 7, = 12.5um, b) green: b = 8.25um, c)
blue: b= 4pm,r. = 25pm, ne, = ny = 1.45, n, = 1.47).

The bending loss curves of the other two simulated fibers cross at a bending radius
of R ~ 0.15m. For lower bending radii the structure with b = 4 pm, which shows
only a very low influence to bends, exhibits lower losses.

However, depending on the application one might choose the design with the in-
termediate thickness of the low-index layer with b = 8.25 pm because of the lower
confinement losses of the straight fiber. The calculated curves prove that there is a
trade-off between the confinement losses and the sensitivity to bending within the
optimal design space.

The high bending sensitivity of the fiber with b = 7, = 12.511m can be explained by
figure 5.15h). As can be seen, a considerable part of the corresponding fundamental
mode simulated here for a bending radius of R = 0.2m is shifted into the cladding
layers which causes the high losses. Whereas for the structure with b = 4 pm, the
mode is well confined within the center of the fiber (figure 5.15a)).

Another interesting feature of BFs with a low layer thickness b is that the deformation
of the intensity pattern of the fundamental mode due to fiber bends is comparably
weak. Figure 5.16 shows a comparison of the simulated intensity distributions of
the fundamental modes of a step index fiber (NA=0.07) and a BF with b = 4 pm
when they are both bent with R = 0.03m. Both fibers have the same core diameter

of 25 pym. Despite the strong bend, the modes are well confined inside the core, but



108 CHAPTER 5. INVESTIGATION OF SPECTIALTY FIBERS

the mode of the step index fiber is deformed much more and its mode field area is
strongly decreased.

If the layer thickness b is larger, for instance, b = 7, = 12.5pm as in 5.15b) the
calculated mode field area might even increase when the fiber is bent because the
intensity distribution is shifted partly into the cladding rings. Reducing the layer
thickness avoids this decrease of the beam quality as can be seen by the comparison

in figure 5.15a).

b=4pum R=02m|b=125um R=0.2m

O

Figure 5.15: Calculated electric field distribution of the fundamental mode at a bending
radius of R = 0.2m for two BFs with b = 4ym a) and b = r,, = 12.5pm

respectively b).

Bragg Fiber Step-Index Fiber

Figure 5.16: Comparison of the bend-induced field deformation (R = 0.03m) of the FM
of a BF with a small layer thickness of b = 4um and a step index fiber

(NA — 0.07) with the same core diameter.
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Besides the bending sensitivity, it is interesting to know how the layer thickness
affects the usable wavelength range which can be delivered by the BF. To investigate
this, the wavelength is varied and the confinement losses of all discussed structures
are calculated. Figure 5.17 compares the bandwidth of the three fibers.

The lowest usable wavelengths are very similar for b = 8.25pm and b = 4pm.
The losses increase significantly at about A = 0.6 pm. For b = 12.5 pm the short
wavelength limit is shifted by 50 nm to higher wavelengths compared to the two other
fibers. The long wavelength limit is less sharp. For b = 12.5pm it is also shifted
by 50 nm to higher wavelengths compared to the fiber with b = 4 um resulting in
the same bandwidth for b = 4pm and b = 12.5um. The optimized structure with
b = 8.25um has a higher long wavelength limit as the other two and therefore a

broader bandwidth. Deviations from the optimized layer thickness lead to a reduced
bandwidth.

100 3
4 H
04 s+ + b=825um 13 f
. * b=4.00pm :
80+ §ig + b=125um H
- 70 o
E .
& B0 - =
T .
c 504 2 i
g a] :
= - 3
=3 iy
£ 30~ A
< &
2] H
10 i
0+ T T T T
0.5 06 07 0.8 09 1.0 11 1.2 13 14 1.8
Wavelength (um)

Figure 5.17: Comparison of the calculated bandwidth of the three BFs with different

low-index layer thicknesses b.
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5.2.3 Experimental Investigations of Bragg Fibers

The aforementioned iterative procedure was used to optimize a Bragg Fiber with a
core diameter of 50 pm. The Fiber Optics Research Institute (FORC) in Moscow, a
leading facility for the production of BFs, produced the preform using the MCVD
method. With this preform the FORC produced a fiber with a diameter of 125 pm
(BF125), which was used for the characterization of the refractive index profile using
a commercial refractometer, and two fibers close to the nominal parameters with
diameters of 180 pm (BF180) and 200 pm (BF200).

The MCVD-produced fibers tend to have a index jump in the center. Figure 5.18
shows a scan of the refractive index of BF125 in two orthogonal directions measured
by the FORC. The scan was rescaled to resemble that of BF180 (from the same
preform). The y-scan shows a peak of the refractive index in the center of the fiber

which could influence the mode structure.
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Figure 5.18: Refractive index profile of the produced BF relative to the cladding refrac-

tive index measured at two orthogonal directions.

Indeed, the measurement results of all three fibers revealed some problems. The
losses were much higher than expected, and the measured beam propagation factors
were between M? = 2 — 3 (except for very short pieces of fiber). The measured
NF was more ring-shaped than Gaussian. It turned out, that the M?2-factors de-
pend on the fiber length indicating that the mode composition changes during the

propagation of the laser light. A quasi-Gaussian beam is transformed to HOMs.
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Since these modes are lossy, as intended for asymptotically SM fibers, the measured
attenuation of the fiber is much higher than expected. Figure 5.19 shows the NF
and FF patterns obtained after one of the BFs for two different lengths. The FF was
measured using the MM lens setting of the NF-FF-measurement setup (see chapter
4.2.2). For a short fiber length of [ = 1m the near- and far-fields are almost Gaus-
sian, but for [ = 10m the NF looks ring-shaped similar to a LP;; mode. It seems,
that the identified refractive index peak in the center of the fiber efficiently couples
the fundamental mode to HOMs. Compared to other HOMs the LPy; mode is fairly
well guided in this large-core fiber. Hence, the output of a long fiber is close to a

LPy; mode.

Figure 5.19: Photograph of the end face of a BF taken through a microscope a). The
four high-index layers are slightly brighter than the undoped fiber parts.
Measured near- and far-field patterns after a fiber of [ = 1m length (first
row) and a longer fiber of about 10 m length (second row). The high-index
rings are visible in ¢) because some light was captured by index-guiding.

These rings were cut with the help of a NF aperture in d).

To reduce the influence of this index disturbance in the center, the remaining preform
was used to draw fibers with smaller core diameters. Although the cladding layers
are becoming thinner as well, stretching the structure to a core diameter of about
25 pm results in a fiber structure which is still interesting and useful according to
the simulations. Because the resulting fibers would be too thin for handling, the

preform was overlaid with a second cladding of pure silica.
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Three slightly different fibers with diameters of 226, 238 and 250 pm, referred to as
BF226, BF238, and BF250, were drawn. The experimental results obtained with
these fibers were similar to the initial fibers BF180 and BF200 with larger cores.
The beam quality again decreased with the propagation length. Table 5.3 shows a
comparison of the obtained M?2-factors after 1 and 10 m of fiber showing the stronger

influence of HOMs for longer fiber lengths again.

Fiber | o [dB/km] | dx / dy [pm] | M2/ ]\/ff [ [m] ‘
BF238 — 25.4 /263 | 1.17 / 1.09 1
BF238 — 25.3 /259 |1.56 /146 | 10
BF250 — 25.8 /26.0 |1.18 /1.14 1
BF250 — 25.8 /264 |1.55/1.45| 10

Table 5.3: Results of the characterization of BF238 and BF250 drawn from the same

preform.

Beam propagation factors of approximately 1.5 were obtained with fibers of 10m
length. These values are lower as those of BF180 and BF200 with M? ~ 2 — 3.
Apparently, the stretching of the fiber reduced the coupling to the HOMs, but it was
not sufficient to ensure stable propagation of the fundamental mode whit M? ~ 1.1
as calculated by the Kirchhoff integral (2.85) with the help of the simulated NF pat-
tern. As a result, the bending sensitivity depends on the fiber length as well because
the mode composition is changing and every mode has its own bending sensitivity.
Hence, the results shown in the figures 5.20 and 5.21 are only qualitative.
However, the measured losses are lower than 0.1dB/m at a bending radius of
R = 0.1m for all BFs. The fiber properties are robust against bends. For the
characterization of the BF250 only a very short fiber (I = 1m) was used to ensure
a Gaussian-like fundamental mode beam. As can been seen from the blue circles
in figure 5.21, this resulted in extremely low bending losses as expected from the

analyses of BFs with thin microstructured layers shown in the previous section.
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Figure 5.21: Measured bending losses of BF226 (black quadrates), BF238 (green pen-
tagons), and BF250 (blue circles).



114 CHAPTER 5. INVESTIGATION OF SPECTIALTY FIBERS

5.3 Leakage Channel Fibers

The LCFs considered in this chapter only consist of pure silica glass. Light is guided
in the center of the fiber due to air holes surrounding the core of the fiber as described

in chapter 2.6.4.

5.3.1 Influence of Basic Parameters

As depicted in figure 5.22a) the basic geometrical parameters are the core radius
Teo, the cladding radius r., the hole diameter d, and the center-to-center distance
of the holes, called pitch A.

A higher number of smaller holes or a lower number with larger diameter could be
used for fibers with the same core size. Depending on the ratio A/d, these fibers may
have the same MFA and the same leakage losses. At first, LCFs with the same core
radius but a different number of holes in the microstructured region were simulated
to investigate the influence of the number of holes. LCFs with similar properties of
the straight fibers could be obtained by varying the ratio A/d. These fibers were
then compared with regard to the bending sensitivity and the loss ratio between the

fundamental mode and the subsequent higher-order mode.

Microstructured

Region

s ™ Core Bent in x-z-plane
— Cladding
Figure 5.22: a) Scheme of a LCF. The intensity distribution of the fundamental mode is

deformed and shifted due to a bent in the x-z-plane b) and a bent in the

y-z-plane respectively c).

The simulations (not shown) suggested that the loss ratio decreases if more holes

are used. Hence, a small number of holes is preferred because a high loss ratio is
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desired to efficiently guide the fundamental mode and to prevent mode mixing as
described in chapter 2.4. On the other hand, if the number of holes is decreased, the
mode shape becomes more asymmetric and the bending losses increasingly depend
on the direction of the bend with respect to the position of the holes. The modes
inside the fiber core become deformed and shifted due to bends of the fiber. If the
field is shifted toward a hole the losses are lower compared to the situation where
the mode is shifted in direction of a bridge. As a consequence a LCF design with 5

holes, as shown in figure 5.23, was chosen for further investigations.

5.3.2 LCF with 5 Holes

Simulations were used to optimize a LCF with 5 holes in such a way that the losses
of the fundamental mode of the straight fiber are in the oder of the attenuation
of the material (about 1dB/km) and below ap = 0.1dB/m at a bending radius

of R = 0.2m. Furthermore, the loss ratio of fundamental and higher-oder modes

QFM
QHOM

should be higher than 10 (g = > 10) for all bending radii larger than 0.2 m.

These conditions limited the core radius to values of r,, < 15um.

Figure 5.23: End face of an LCF with 5 holes and the corresponding near- and far-field

images.

According to the optimized design, a fiber preform produced by Heraeus Quarzglas
was drawn to a fiber at the IFSW. The produced fiber turned out to have smaller
air holes than desired (dproduced < design)-

Larger air holes, better corresponding to the design value of d = 26 pm, were then
produced by reducing the furnace temperature in a 2nd production run. However,
this resulted in a reduced core radius of about 14.3pm which is slightly smaller

than the target value of 15 pm. Based on these experiences the preforms for further
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LCFs were ordered with a hole size 10% larger than the designed to avoid problems
accociated with low drawing temperatures. A microscope photograph of the end
face of this fiber as well as the measured NF and FF images are presented in figure
5.23. The NF pattern shows that the arrangement of the five holes results in a
pentagon-shaped intensity pattern. From this pattern an effective mode area of
Aeg = 383 1m? was derived which is about 10% lower than the expectation for the
original design with A, = 425 pm?. Together with the corresponding FF picture, a
beam propagation factor of M2 = ]L[f = 1.1 was determined.

Similar values were obtained by further measurements of the beam caustic. The
good M?value and the fact that the NF pattern remained stable when the fiber
was bent shows that this fiber behaves as a regular SM fiber. Even for intentionally
bad coupling conditions and a fiber length of only 3 meters, HOMs were not observed
after the fiber. Hence, the losses of the HOMs and therefore the loss ratio between
fundamental mode and HOMs were higher than expected. This can be explained
by the smaller mode field area due to the reduced core size of the actual fiber when
compared to the initial design. The smaller core leads to a lower amout of HOMs
which additionally experience higher losses.

The attenuation of this fiber was measured using the cutback method. A value of
a = 51dB/km was obtained with a 35.5m long fiber. This very high value might
be explained by a contamination with small dust particles disposed at the fiber end
faces. Although, the measurements were done carefully on a clean optical table
below an air flow filter, the pollution arose during the measurements. This can
be explained if the production process is considered. During the drawing the glass
is heated to nearly 2000°C and so is the air inside the holes. The fiber is rapidly
cooled to room temperature when leaving the furnace. This temperature drop leads
to a partial vacuum inside the air holes. Because the holes of the fiber are tiny the
pressure compensation needs a long time. This results in a faint air flow which takes
dust particles onto the fiber end faces and into the fiber. The particles darkened the
fiber end faces which was observed with a microscope. Hence, the high attenuation
of the fiber was attributed to this effect. Therefore, the measurements were repeated
directly after a new piece of fiber was produced.

As expected, the measured attenuation of 22dB/km of the new fiber (with I = 29m)
is considerably lower as for the previous characterized fiber with o = 51dB/km.

The influence of the dust was eliminated, but the attenuation is still about 10 times
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higher than expected from the simulation. This could later be attributed to a

chemical reaction during the drawing process which is discussed in section 5.3.6.
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Figure 5.24: Different measurements of the bending losses (filled circles) are compared

to the simulation results (open circles).

Besides the investigation of the delivered beam quality and the fiber attenuation,
the bending sensitivity was also investigated. Because the fiber structure is not
rotationally symmetric the bending losses depend on the orientation of the fiber.
In the simulations the two extreme cases for the bends were calculated; one which
shifts the mode directly to a hole and another which shifts the mode precisely be-
tween two holes. But within the measurements it is difficult to define a distinct
plane for the fiber bend. Furthermore, the high contrast of the refractive index be-
tween air and silica leads to a polarization dependence of the losses. The simulation
calculates eigenmodes which are fully polarized, but the measurement is done with
non-polarized light. Even if polarized light would be used, the polarization depen-
dent losses could still not be determined experimentally because the fiber does not
conserve the polarization state.

Hence, a direct attribution of simulations and measurements is not possible. There-
fore, the worst case scenario of the fiber bending losses was considered in the design
phase to make sure that the losses are below a limit of 0.2dB/m at R = 0.1m.
To take into account the different planes in which the fiber could be bent exper-
imentally, the fiber was removed, turned, and inserted in the measurement setup

repeatedly.
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The measured (filled circles) and the simulated results of the bending losses (open
circles) and are shown in figure 5.24. The calculated values which correspond to
fully polarized modes and the extreme cases concerning the direction of the bend
are scattered over a large range of losses at a certain bending radius R. The mea-
surements revealed slightly higher losses but there is a general agreement between
simulations and measurements. Based on this results further efforts were made to
reduce the attenuation and to increase the mode field area while keeping the bending

sensitivity low.

5.3.3 Influence of the Number of Microstructured Layers

One possibility to improve the concept might be the use of several layers of holes.
Experiments on LCFs with one layer of holes are reported in [41, 42| where it was
also stated that by using several layers, the loss ratio can be increased [42] which
indicates that the mode field area could be increased as well.

At the time of this work no detailed experimental results on LCFs with several mi-
crostructured layers were available and no information on the their bending behavior
could be found in literature. Hence, a basic analysis was performed.

First, a structure similar to the discussed LCF with one microstructured layer is
extended by another layer with holes of the same size. This does not increase
the loss ratio, on the contrary, the loss ratio decreases as do the overall losses
(a;l&yer apyer < a;lf,lyer aggyf;s). More holes make the index guiding more efficient.
To compensate for this, the hole size has to be decreased and the positions of the
holes have to be adjusted as well to keep the core size equal. To make an mean-
ingful comparison, the hole size was decreased until the fundamental mode of the
two-layer structure had the same (straight fiber) losses as the fundamental mode
of the single-layer structure with the same core size. Then the loss ratio and the
bending behavior of these fibers were calculated to investigate which benefits could
be achieved by introducing more microstructured layers.

A series of simulations for two structures with similar mode field area and similar
losses of the fundamental mode but with 6 (one layer) and 18 (two layers) holes were
performed. It turned out that the loss ratio of the fundamental LPg; mode and the
LPy; mode are 3 orders of magnitude larger for the structure with 18 holes. This
means that the mode field area could indeed be increased considerably by decreasing

the hole size and introducing a second layer of holes. The attenuation is increased
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with decreased core size, but this can is compensated by the second microstructured
layer. However, the simulations also showed that the resulting 18-hole structure is
more sensitive to bending than the simple one-layer structure. Because the hole
size d is decreased, while the core size is kept constant, the bridge width wj for
the two-layer structure is increased w]™® > wy™* (LCF scheme in figure 5.22).
This leads to higher bending losses which apparently cannot be compensated with a
second layer of air holes. As the bending losses strongly depend on the bridge width
wy, hence, the two layer structure is more sensitive to bending.

To investigate this finding in more detail, three fibers with equal hole and core sizes
but different numbers of microstructured layers are considered in the following. The
holes are arranged in a hexagonal crystal lattice. The structures with one and two
layers can be derived from the structure with three layers by removing the outer

layer(s). The corresponding calculated results of the bending losses are shown in

figure 5.25.
1000
# 1 Layer |
- 4 -2 Layer
e l - @ -3Layer _‘
10 Wiimagy. Wi "
g 4
@ ] 2 5
g $:3
w 017 L
= o0t R T
1E-3 4 e
a.
164 . : e
0,0 0,1 0,2 0,3 04 0,5

Bending Radius R (m)

Figure 5.25: Comparison of the bending sensitivity of 3 LCF structures with identical
parameters but different numbers of layers of holes in the microstructured

region.

Naturally the fiber with the highest number of layers (highest number of holes) ex-
hibits the lowest losses (if the fibers are kept straight) because the hole size d is the
same for all the fibers. However, if the fibers are bent, their losses converge with
decreasing bending radius R.

This means that increasing the number of layers did not improve the bending sen-
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sitivity it simply reduced the confinement losses of the straight fiber. Therefore, it
can be concluded that if the fiber design is limited by the loss ratio, increasing the
number of layers will improve the design space. But if the design is limited due to
the bending losses, increasing the number of layers is not sufficient to substantially

reduce these losses at low bending radii.

5.3.4 Optimization of the Microstructured Layers

Another freedom of design for a LCF with several mircostructured layers is to use
different hole sizes in different layers. Further FEM simulations showed that this
possibility can be used to reduce the bending sensitivity of such structures. As an
example, a LCF with an inner layer made of 6 holes with a diameter of 12.0 pm
and an outer layer made of 12 holes with a diameter of 14.6 pm is considered in the
following. The 18 holes of this chirped LCF are positioned as a hexagonal lattice as
shown by the inset in figure 5.26. The fiber is referred to as CLCF18.

The mode field area of the fundamental mode was calculated to be 708 ym? at a
wavelength of 1080 nm according to equation 2.41. The CLCF18 is compared to
a LCF with the same number of holes at the same positions, but with an equal
intermediate hole size of (d = 12.0pm + 14.6 pm)/2 = 13.3um for all holes. This
fiber is referred to as LCF18. The area of the fundamental mode of the LCF18 was
calculated to be 647 pm? at 1080 nm. Compared to the CLCF18 the inner holes
of the LCF18 are larger, but their center positions are the same which results in a
smaller core size. Therefore, the calculated mode field area of the fundamental mode
of the LCF18 is about 9 % smaller than the corresponding value for the CLCF18.
Hence, one could expect that the LCF18 has a lower bending sensitivity than the
CLCF18. However, the simulated bending losses shown in figure 5.26 reveal that
the losses of the fundamental mode of the CLCF18 (indicated by the black circles)
are lower than those of the fundamental mode of the LCF18. Since the bending
sensitivity is reduced and the mode field area is increased in case of the chirped
structure, it can be concluded that introducing different hole sizes, increasing from
the inner to the outer layer, improved the LCF design.

A minor drawback of the CLCF18 is that the losses of the straight fiber are slightly
increased, but the magnitude is still lower than the material absorption. Hence, this
disadvantage can be neglected in real world applications. Another special feature of

the CLCF18 design is the extremely large loss difference between the fundamental
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Figure 5.26: Comparison of the bending losses of the LCF18 with equal hole size (trian-
gles) to the CLCF18 with a chirped hole size (circles).

LPy; mode and the LP;; mode as indicated by the dashed lines in figure 5.26. The
propagation loss of the fundamental mode is about 0.2 dB/km (material absorption
is not considered) for the straight fiber (black dashed line), whereas the loss of the
LPy; mode is > 1dB/m (red dashed line). Despite the large core or large mode field
area respectively, the structure is asymptotically SM with a very high loss ratio. This

was achieved by specific cladding resonances as explained in the following section.

5.3.5 Optimization of the Cladding Diameter Using Cladding

Resonances

Another approach to further improve the described LCF makes use of a resonant
coupling to cladding modes [62]. In conventional step index fibers, the core-guided
modes have a larger effective refractive index than the cladding modes because the
core modes are propagating in a region with higher refractive index.

In case of the LCFs, the core and the cladding consist of the same material. There-
fore, the effective refractive indices of core and cladding modes may be similar. The
real part of the effective index of the core modes mainly depends on the core size
which is usually fixed by some constraints (maximized area at certain bending, loss
ratio, mode spacing,..). The real part of the effective index of the cladding modes

depends on the cladding diameter which can, to a large extent, be chosen arbitrarily.
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Hence, the cladding diameter can be optimized to match a cladding mode to the
LP1; mode which will enhance its losses. If the losses of the LP1; mode are increased,
the loss ratio as well as the loss difference is increased which improves the design
according to the discussion in chapter 2.4. On the other hand, one should make sure
that no cladding mode is in resonance with the desired fundamental mode.

Figure 5.27 shows the calculated losses of the LP1; mode of the CLCF 18 for different
cladding diameters. Three peaks are visible in the range of 370 to 405 pm indicating
that three different cladding modes become resonant with the LP;; mode depending

on the diameter of the cladding.
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Figure 5.27: Losses of the LP1; mode for different cladding diameters of the CLCF18.
By changing the diameter of the cladding and keeping all other parameters
(hole size, separation, and arrangement) constant, three resonances with
increased losses are obtained. The strongest coupling to cladding modes is
achieved at a diameter of 387.58 pm. The inset shows the field distributions
of the LP;; mode and the cladding mode in resonance at this cladding

diameter.

The highest losses obtained at a cladding diameter of 387.58 ym are more than two
orders of magnitude higher than out of resonance which shows the considerable in-
fluence of these cladding resonances on the losses. The overlap of several resonances
creates a broad region of increased losses in this particular design. Losses of more
than 0.1dB/m can be achieved within a resonance of about 8.5pm width which

relaxes the production tolerances.
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The inset of figure 5.27 shows the LP;; and a cladding mode for a cladding diameter
of 387.58 pm. At this diameter a cladding mode is in resonance with the LP;; mode.

The calculated difference of the effective mode indices is only
Angg = 1.449125493 — 1.449125433 = 6.0 - 10°° (5.8)

which satisfies the phase matching condition 2.73 even in the absence of perturba-
tions. Concerning the loss matching condition 2.80 the coupling constant and the
difference of the losses of the two modes have to be considered. The coupling con-
stant can be derived using overlap integrals. The simulations show that the LPy;
extends into the area of the cladding, whereas a part of the cladding mode extends
into the core area. But even without a detailed investigation of the coupling constant
(k) it is safe to assume that 2.80 is not fulfilled because the losses of the cladding
mode are much higher than the losses of the LP;; mode.

The attenuation of the cladding mode depends on the fiber coating. Since a high-
index polymer is used the losses of the cladding mode are many orders of magnitude
higher than the losses of the LP;; mode. According to chapter 2.4 a complete cou-
pling can only occure if the loss matching condition is not fulfilled. However, the
LP; mode is strongly affected by the cladding resonance. This can be explained
by two factors. First, the two modes are very precisely at the phase matching point
because the structure is designed that way and second, the losses of the cladding
mode are significantly higher than the losses LP;; mode which leads to an consid-
erable effective loss of the LP;; mode even in case of incomplete coupling.

If the losses of the LP; mode are increased, the coupling of the free space beam to
the fiber modes becomes much more convenient because only the delivered power
has to be maximized without considering the beam quality. Furthermore, a (com-
plete) coupling between the fundamental mode and the LP;; mode becomes less
likely according to the loss matching condition (2.80). In contrast to the case of
an incomplete coupling with a cladding mode, as described above, the incomplete
coupling between two core modes would not lead to a comparably high influence on
these modes because their losses are low compared to the losses of a cladding mode.
Hence, this effect can be used to make the propagation of the fundamental mode in
LCF more stable against distortions. The requirement for the matching of the real
parts of the effective refractive indices of core and cladding modes is that the refrac-
tive index of the core material is the same as the refractive index of the cladding. For

the use of the cladding resonances it was therefore not important that the CLCF18
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exhibits two mircostructured layers with chirped holes.

Usually, it is advantageous that a fiber can be used at different wavelengths. There-
fore, the wavelength dependence of the resonant mode coupling is analyzed. Figure
5.28 shows the results of a wavelength dependent loss calculation for the LP;; mode

using the ideal cladding diameter of 387.58 pm.
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Figure 5.28: Wavelength dependence of the resonant mode coupling at a cladding diam-
eter of 387.58 pm of the CLCF18. The graph shows the calculated losses of

the LP1; mode at different wavelengths.

The highest losses occur at a wavelength of 1080 nm, showing that the different
calculations are consistent because the structure has been optimized for this wave-
length. Deviations from this wavelength reduce the losses, but the losses vary only
weakly with the wavelength. This means, that the mode coupling effect can be used
over a broad spectral bandwidth. The material dispersion, which is included in the
calculations by the Sellmeier equation (3.23), has no influence on the cladding res-
onances because the materials of the core and the cladding are the same. Hence,

only the dispersion of the waveguide itself has an influence.

5.3.6 Experimental Investigation of a Chirped LCF

After the design phase, the optimized CLCF18 was produced and experimentally
investigated as described in the following. The fiber preform, ordered from Heraeus

Quarzglas, had hole diameters which were increased by 10% compared to the design
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to take into account the systematic production error mentioned in section 5.3.2.
The fiber was drawn from the preform with a controlled pressure of a nitrogen (Ny)
atmosphere inside the holes at the IFSW. Different drawing speeds and furnace
temperatures were applied to achieve a fiber structure close to the designed values.
This was tested with a microscope on small fiber samples taken during the drawing
process. Figure 5.29 shows the comparison of the structural design and one of the
manufactured fiber. The symmetry of the produced fiber is as good as expected.
The holes are round and uniform and their sizes are close (white lines) to the design
values, but the overall core region and therefore the core size of the produced fiber
is smaller which leads to a smaller mode field area.

With the help of the broadband ASE source, the NF and FF intensity distributions
were measured after the fiber. A mode field area of Ay = 3/2(dpean/2)? - V3 =
434.441m? was calculated from the NF distribution. This value is considerably
smaller than the expected value of 708 pm? from the fiber design. The beam
propagation factor calculated from the measured near- and far-field distributions
is M? =~ 1.1.

Figure 5.29: CLCF18 end face microscope picture, scaled according to the measured
outer diameter and compared to the design. White lines are reference guides
to the eyes (LHS). Measured NF and FF distribution (RHS).

A cutback measurement of a long piece of the first produced CLCF18 revealed
an extremely high attenuation of about 120dB/km. Since the cleaning process
was already improved and pollution by dust particles was carefully avoided, other
possible impurities were investigated to explain the unexpected high attenuation. It

turned out that the clean nitrogen, used to stabilize the holes during the drawing
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process, itself reacts with silicon monoxide SiO and a low content of carbon C
or carbon oxide C'O impurities and creates silicon nitride (Si3N;) at temperatures
between 1400-1500°C [63].

Higher temperatures lead to silicon carbide (SiC). The C impurities probably arise
from the cleaning of the rods of the preform with alcohol. At a wavelength of 1 pm
SizNy has a refractive index of 1.99 and is highly absorbing. Hence, the strong
attenuation of the CLCF18 as well as of the attenuation of the LCF5 (see previous
section) can be explained by the presence of Si3Ny. Using oxygen instead of nitrogen
during the drawing process should prevent this reaction.

Based on this result, new fibers were drawn to the same outer diameter at slightly
different drawing temperatures which resulted in slightly different sizes of the holes.
The results of the characterization of fibers drawn at four different temperatures are
summarized in table 5.4. All fibers showed a very good beam quality, as measured
with the Spiricon Beam Analyzer and a low attenuation of about 6dB/km which
is only 5% of the attenuation of the first CLCF18. Filling the holes with oxygen
instead of nitrogen strongly reduced the attenuation.

However, it should be mentioned that a strong "frozen-in" stress, as a result of the
rapid cooling of the glass during the drawing process, makes the fiber with its 18 air
holes brittle at positions where the coating quality is poor. In particular, the fiber

drawn at 7' = 1875°C turned out to be very fragile.

CLCF18 drawing T [°C| | o [dB/km]| | dx / dy [pm]| | M2 / M | [ |m]|
1869 — 254 /263 |1.07 /114 | 32
1871 6.1 25.3 /259 |1.05/1.11] 325
1873 5.9 25.8 /26.0 | 1.06 /1.08 | 132.9
1875 4.8 25.8 /26.4 | 1.06 /1.07 | 36.5

Table 5.4: Experimental results of the characterization of the CLCF18 drawn to the same

outer diameter at different production temperatures.

The bending losses of all four CLCF18 were measured. The losses obtained according
to equation 4.1 are shown in figure 5.30. The values for the fibers drawn at four
different temperatures are denoted by filled symbols and the expected behavior
simulated according to the design is indicated by open circles. As can be seen,

the measured losses are considerably lower than the results of the simulation. The
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CLCF18 was designed to have losses of 0.1dB/m at a bending radius of R = 0.2m.
The discrepancy between the measured and the simulated losses is especially high
for lower bending radii which can be explained by the fact that the core size of the
produced fiber and therefore the effective mode field area A.g is considerably smaller
than designed. This makes the fiber less sensitive to bending. Not only the MFA,
also the pitch A and hence the A/d-ratio are smaller because the core area is smaller,
but the hole sizes are as designed. Therefore, the produced fibers are supposed to
be considerably less sensitive to bending than predicted by the design.

The fibers drawn at 1869, 1871, and 1875°C show a very similar behavior. The
influence of the minor temperature shifts on the hole size is rather small, but the
fiber drawn at 1873°C behaves differently. At bending radii between 0.1 - 0.2 m its
bending losses are increased compared to the other fibers. Repeated measurements
led to similar results. The reason for this discrepancy between the LCFE drawn
at 1873°C and the other fibers remains unclear and will be the subject of further

investigations.

100
lm-sg c
. 8 o
E 4. -
)
z 3
> -
[} A o]
S 1 l* *
= 1871°C A '] *
S A * 1872°C
s *
. LI
a o1 o
2 1875°Cm 2
a o
0,01 . :
0,0 0,1 0,2 0,2
Bending Radius R (m)

Figure 5.30: Measured bending losses of the CLCF18 produced at different drawing tem-
peratures. The open circles represent the calculated losses according to the
CLCF18 design.
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5.3.7 Optimized Asymptotically 2-Mode LCF

LCFs can be made in a way that several modes are guided efficiently over a certain
distance. This results in a more robust structure and offers the possibility to use
larger core diameters in comparison with the asymptotically SM LCFs. Such fibers
could be interesting as beam delivery systems for high-power fiber lasers because
high-power fiber lasers with a good beam quality tend to have a fraction of power
in the LPy; mode, whereas most of the power is in the fundamental mode. It would
be useful to transport both modes with a passive beam delivery fiber.

As few modes as necessary should be guided by such a fiber to maintain a good beam
quality. Hence, a LCF which guides only the LPy and the LP;; mode efficiently
is desired. The design considerations of such a structure are different from those of
asymptotically SM LCF. The loss ratio of the two modes should be small, but the
third mode and HOMs are supposed to have high losses. An interaction between
the cladding resonances and the LPy; mode is therefore unwanted. Phase-matching
(2.73) of the two core-guided modes should be avoided to prevent an energy exchange
between them which restricts the core size.

The result of the design process was a simple structure with 6 air holes with a
diameter of 35.4 pm and a core diameter of 51.8 um. The structure of the produced

fiber agrees very well with the design as can be seen from figure 5.31.

Figure 5.31: Design of the fiber (left) and a microscope photograph of the end face of the
produced LCF (right). The fiber with a core diameter of 51.8 pm efficiently
guides LP(; and LPy; modes.

The calculated fundamental mode of the structure has a mode field area of 1187 ym?
at A = 1080 nm which is higher than possible for an asymptotically SM fiber with

a similar bending sensitivity. The bending losses of the fiber are reported in figure
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5.32. The straight fiber is expected to guide LPg; and LP;; modes with similar
losses as indicated by the black solid line (LPg;) and the red dotted line (LPy;).
The fiber was designed in such a way that the LP;; mode, which is 4-times polar-
ization degenerate, has bending losses which are lower than 0.1dB/m at a radius of
R = 0.2m (red open rectangles). The calculated losses of the 2-times polarization
degenerate fundamental mode are lower as indicated by the black open circles. Pos-
itive R values specify bends in the x-z-plane and negative values specify bends in
the y-z-plane.

The low influence of the bend direction can be explained by the small ratio between
pitch and hole diameter ratio of A/d = 1.23 of this fiber which leads to a narrow
bridge width of w, = A — d = 8.1. The direction of the bend with respect to the
hole structure is unknown for the measured data (black closed symbols) and only
marked on the positive side. A Gaussian beam was coupled into the fiber (collima-
tion f = 8.0 mm, focusing f = 45mm) and a beam propagation factor of M? = 1.48
was measured after the fiber. This M? value suggests that both modes (LPg; and
LPy;) are excited inside the fiber.

Hence, the measured losses are supposed to be in between the calculated losses of the
LPgy; and the LPy; modes. But the measured losses are higher than expected from
these simulations despite the fact that the produced fiber agrees well to the design.
A possible explanation could be that because the structure is not asymptotically
SM, the pitch to hole diameter ratio is small. As a result, surface scattering due to
the roughness of the glass-hole-interfaces becomes a more important factor than in
case of asymptotically SM LCF for which the dominant loss channel is the leakage
due to the glass bridges (larger pitch to hole diameter ratio). The surface scattering
cannot be included within the FEM simulations. This might explain why the simu-
lations are underestimating the bending losses of this fiber. The attenuation of the
fiber was measured with the cutback method at a high bending radius of about 1 m

and was found to be less than 17.5dB/km.
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Figure 5.32: Bending losses of a LCF suitable to deliver the 2-times polarization degen-
erate fundamental LPy; mode and the 4-times degenerate LP;; mode. The
open symbols correspond to the simulated results. Positive R values specify
bends in the x-z-plane and negative values specify bends in the y-z-plane.
For the measured results, the direction of the bend in reference to the hole
structure is unknown and marked only on the positive side (black filled

symbols).
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5.3.8 Extended Leakage Channel Fiber Concept

During the investigation of leakage channel fibers it was noticed that this concept
can be extended if a further parameter is considered. In addition to the bridge width
wy, a bridge length [, can be introduced as shown in figure 5.33. Simple holes which
are stabilized by pressure during the drawing process and therefore of round shape
are not suitable as low-index inclusions in this case. The production of such fibers
will therefore be problematic.

Nevertheless such an extended LCF is interesting because the losses can be adjusted
by changing the new parameter [,. Hence, the loss ratio can be increased by utilizing
a high ratio of A/d which leads to unwanted high losses for the fundamental mode.
But these losses can now be balanced by increasing the bridge length [,. According
to the FEM simulations, this can be adjusted in such a way that the LP;; mode
is not core-guided while the LPg; mode experiences low losses even for very large
cores. Hence, SM fibers with extremely large cores with diameters of more than

50 pm seem feasible.

Figure 5.33: Scheme of an extended LCF concept. The losses of the fundamental mode
can be adjusted by the bridge length [,. The geometrical parameters of such
an investigated fiber are indicated in gray. The calculated LPg; and TMg;

modes corresponding to this parameters are shown.

The drawback of such a structure is a very high sensitivity to bends because of the
large bridge width w;, necessary to prevent the guiding of HOMs. The bending losses
cannot be compensated by the bridge length [, this can only be achieved for the
losses of the straight fiber. Therefore, such fibers will not be of interest for flexible

beam delivery, but the mode field areas of fiber lasers and amplifiers in a rod-type
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configuration could be enhanced by such special LCFs which would enable a further
power scaling of diffraction-limited laser sources.

Further simulations showed an unusual feature of this special type of LCF. Because
of its 3-fold symmetry the LPs mode does not exist and a LP3; mode is core-
guided although the LPj; is not as can be seen form the pictures in 5.33 and 5.34.
Furthermore, the LPy; mode is easily disturbed when the fiber with a core diameter
of 100 pm is bent (R = 0.1) and a LPy;-like mode becomes the lowest eigenmode as

shown in figure 5.34.

Figure 5.34: Lowest-order eigenmodes of the extended LCF concept (with geometrical
parameters shown in figure 5.33) if the fiber is bent with R = 0.1m a).
Because of the symmetry, the structure possesses a weakly core-guided LP3;

mode b) but no LPy; mode.



Chapter 6

Fundamental Mode Transport in
Multimode Fibers

As discussed in the previous chapters, imperfections of the glass, the geometry, or
distortions such as fiber bends, stress, as well as nonlinear effects at high intensities,
will influence the eigenmodes and lead to mode coupling and hence energy transfer
between them.

As shown in chapter 2.4, a phase matching condition (2.73) has to be fulfilled to al-
low mode coupling. Any disturbance along the fiber can effectively couple two modes
only if it has a significant spatial Fourier component which matches the propagation
constants of the two modes.

If the difference ABs = |31 — Ba| is large enough, the usual disturbances like geom-
etry changes, fluctuations of the refractive index, or fiber bends are changing too
slowly to cause an efficient mode coupling. This means, that the difference (of the
real parts) of the propagation constants or equivalently the difference of the effective
refractive indices

A = [Np1 — Negg2| (6.1)

which specifies the mode spacing between the modes, defines how likely they will
exchange energy due to a perturbation.

Therefore, one can conclude that it could be sufficient to use fibers with a high mode
spacing instead of (asymptotically) SM fibers to transport a SM beam in a MM fiber.
For all kinds of fiber structures investigated and presented in this work the mode
spacing decreases with increasing core size which prevents the use of arbitrarily large

cores. However, a specific minimum value for An.g is a less critical requirement than

133
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demanding an (asymptotically) SM large mode area fiber. The question is how large
the Aneg has to be in order to avoid mode coupling and thereby maintain the beam
quality during the beam transport. The limit of a scaling of the fiber core size and
hence the effective mode area of the fundamental mode depends on the minimal
acceptable Angg.

From the birefringence of commercially available polarization maintaining fibers it
can be deduced that with An.g ~ 5 x 107 polarization mode coupling is efficiently
suppressed. Furthermore, J.M. Fini and S. Ramachandran stated [55] that the mode

coupling can usually be neglected if
Aneg >1x 1074 (6.2)

which is used as a reference value in the following sections.

6.1 Fundamental Mode Transport in Multimode Step
Index Fibers

Step index fibers are the natural choice for MM fibers because of their low atten-
uation. Commercially available passive fibers with core diameters between 20 and
30 pm and NAs between 0.06 and 0.08, often referred to as large mode area (LMA)
fibers (see chapter 2.6.1), support only a few modes. For the following investiga-
tions, such a fiber with 30 pm core diameter and a NA of 0.06 was purchased from
the company Nufern (LMA-GDF-30/400). The fiber has a cladding diameter of
400 pm which gives mechanical strength to the fiber and reduces micro bending.
The attenuation is specified to be a = 1.4 dB/km.

Simulations performed with COMSOL Multiphysics showed that this fiber sup-
ports 16 core-guided modes including polarization degeneracy. In comparison to
the (asymptotically) SM fibers described so far, the coupling of a free space Gaus-
sian beam to the fiber is more critical because HOMs are easily excited. Therefore,
it was very important to optimize the coupling conditions to excite only the fun-
damental mode. This was achieved by measuring the beam propagation factors for
different coupling conditions after a 10 m long fiber. The alignment was optimized
for different collimation and focusing optics which led to the M? values shown in
figure 6.1. When using a collimation package (Thorlabs) with a focal length of

8mm, the best results were obtained with a focusing lens with 30 mm focal length
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as indicated by the rectangles. A lower beam propagation factor of M? ~ 1.12 was
obtained with a collimation package with a focal length of 15mm in combination
with a focusing lens with f = 50m. This shows that a high beam quality could be
maintained during the propagation inside the 10m long fiber.

To improve the manageability and the reproducibility of the critical coupling con-
ditions, the alignment of the free space beam to the fiber was automated using

computer controlled axes as described in chapter 4.2.1 during the course of these

measurements.
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Figure 6.1: Beam propagation factor M? measured after the LMA-GDF-30/400. For
each measurement different optics were used to couple the laser beam into
the fiber. Two different lens combinations with f = 15mm (triangles) and
f = 8mm (rectangles) were used to collimate the free space beam resulting
in beam diameters of about 1.5mm and 2.9 mm respectively before the beam

was focused into the fiber with different lenses with f = 15..50 mm.

The power measured after the LMA-GDF-30/400 was 86.3% of the power from the
laser source (P = 0.863 - Paser). A theoretical limit for the transmition efficiency
was estimated by taking into account the reflection losses at the fiber-air (glass-air)
interfaces and the losses resulting form the mode matching of laser beam, trans-
fomed via the coupling optics, and the calculated fundamental mode of the fiber.

Assuming a perfect Gaussian laser beam and perfect alignment conditions as well
as the correct knowledge of all fiber properties and parameters of the optics, a max-

imum power transmission efficiency of 92.5% was derived using an ABCD-matrix
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formalism [26] and overlap integrals. Comparing this ideal limit to the measured
86.3% shows that the experimentally achieved transmission efficency, using the au-
tomated coupling setup, is remarkably high.

After the optimization of the coupling conditions the stability of the delivered beam
quality was tested. This was done by comparing the beam propagation factors mea-
sured after the fiber was kept straight with the ones measured after a strongly bent
fiber. Table 6.1 lists the measured M2-factors for an experimental situation in which
the 10m long fiber is placed on the optical table with a large radius ("straight") and
in case a part of the fiber was bent into one loop with a radius of only R = 0.04 m.
The measurements were performed in a row with no realignment. This means the
M? was first derived at maximum bending radius, then the fiber was bent and the
M? was measured again followed by a measurement at maximum radius, and finally

the fiber was bent and measured again.

Fiber M2 | g | M2, |

"straight" 119 1.13] 116 |
bent 1 (R = 0.04m) | 1.16 | 1.10 | 1.13
"straight" 1.21 | 1.15| 1.18

bent 2 (R = 0.04m) | 1.17 [ 117 | 117 |

Table 6.1: Beam propagation factor M? obtained by several beam caustic measurements
of a beam delivered by the LMA-GDF-30/400.

Even at such a tight bending radius of 0.04m, only a very small change of the M?
could be observed. The M?2-factor did not degrade (increase) when the fiber was
bent. On the contrary, even a small decrease of the M? was measured at R = 0.04m.
This can be explained by a small amount of power already propagating in HOMs
hefore the fiber was bent which is most likely because even at perfect alignment con-
ditions the coupling of the free space beam to the fiber is accompanied by a small
mode mismatch (as explained above). The excited HOMs are significantly stronger
attenuated by fiber bends than the fundamental mode which is the reason for the
lower M? value if the fiber is sharply bent.

In addition to the M? value, the NF pattern was observed with the help of a CCD
camera while the fiber was bent or moved. The movement and bending did not

lead to a change in the NF for bending radii larger than 0.1m. The NF pattern
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remained Gaussian. Even for very small bending radii (0.03-0.08 m) only the trans-
mitted power decreased. A systematic investigation of the bending losses is shown
in figure 6.2. No additional losses to the fiber attenuation were observed at bending
radii R > 0.1m. The results of two different simulations are indicated, one which
takes into account the elasto-optical correction (equation 3.22) (blue circles) and one
which does not (black circles). The measured losses (black filled symbols) converge
to the results of the simulations only if the elasto-optical correction is included. For
the simulations of the specialty fibers presented in the previous chapters an elasto-
optical correction was not necessary to achieve an agreement between simulations
and measurements.

The LMA-GDF-30/400 as well as the other investigated LMA fibers showed low
attenuations and virtually no bending losses in the region important for industrial

material processing which is usually R > 0.2m. The influence of the fiber length
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Figure 6.2: Measured (filled circles) and calculated (open circles) bending losses of the
LMA-GDEF-30/400.

of different LMA fibers on the delivered beam quality was investigated by several
cutback measurements. The measurements revealed no change of the beam prop-
agation factor M? over the available fiber lengths from 3m to 20m. From these
investigations it can be concluded, that LMA step index fibers are good candidates

for the delivery of 1kW continuous-wave diffraction-limited laser beams.
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6.1.1 Investigation of the Bend-Induced Deformation of the
Modes

In the course of the investigations of Bragg fibers, it was already mentioned that
the bend-induced deformation of the modes in LMA step index fibers is comparably
strong (section 5.2.2). If LMA step index fibers are considered for the delivery of
high-power SM beams this should be examined in more detail.

The fundamental mode of commercially available LMA step index fibers is well con-
fined unless the fiber is strongly bent as described in the previous section. But the
simulations showed as well that the mode is deformed and the mode field area is
reduced inside the bent sections of the fiber. According to 2.54 and 2.57 this de-
creases the threshold of the nonlinear scattering effects (see chapter 2.2.3).

To investigate this effect experimentally, a special fiber holder, on which the fiber
can be placed with a constant curvature, was used to make the modes in bent fiber
sections visible. This holder was introduced into the NF-FF-setup (chapter 4.2.2) to
measure the NF. The fiber had to be precisely aligned to the fiber holder to ensure
that a constant bend is applied until to the very end of the fiber. The fiber had to
terminate precisely with the holder and the holder had to be aligned to the optical
axis of the measurement setup to make the fiber end face perpendicular to this axis.
The measured intensity pattern was then compared to the simulation results.
Figure 5.16 shows the calculated intensity distribution of the fundamental mode of
a straight and a bent LMA-GDF-30/400 and the corresponding measured results.
A normal v-groove holder, which keeps the fiber straight, and the special holder
which applies a curvature of R = 0.05m was used. The color scheme from the
simulation with COMSOL is different from the color scheme used by the software
of the measurement setup, but the qualitative agreement between simulation and
measurement is evident. The calculation of the effective mode area according to
(2.41) gives a value of 485.4um? for the straight fiber which is reduced to 386.3 pm?
if the fiber is bent with a radius of R = 0.05m. This corresponds to a reduction
of the MFA of 20.4% which can be problematic if the fiber is spooled. If the mode
field area is reduced by 20%, the threshold for SBS and SRS is reduced by 20% as
well according to equations 2.54 and 2.57.

A more detailed analysis of the intensity patterns showed that in case of the simu-

lations the mode field diameter along the x-axis is reduced by 11.5% at R = 0.05m.



6.1. FUNDAMENTAL MODE TRANSPORT IN MULTIMODE STEP INDEX FIBERS 139

This is higher than suggested by the measured results leading to a reduction of
6.8%. Along the y-axis, the simulations revealed a small reduction of the mode field
diameter of about 4%, whereas the experimental results suggested a small increase.
A possible reason for this difference might be the presence of a fraction of power in
HOMSs in case of the experiment. The HOMSs reach further into the cladding leading
to increased mode field areas compared to the simulations which considered all the

power to be in the fundamental mode only. Another aspect already described in
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Figure 6.3: Bend-induced deformation of the fundamental mode of the LMA-GDF-
30/400 if the fiber is bent with R = 0.05m. The comparison between simu-
lation and experiment shows a good agreement (color schemes are different

for the simulation and experimental results).

chapter 4.1.2 becomes evident from figure 6.3. Because of the bend-induced change
of the shape of the mode, it is important that the bends are applied in a way which
makes the transition from straight fiber parts to the required bending radii smooth
in order to avoid losses caused by the mismatch of the eigenmodes between straight
and bent fiber parts.

Strong bending radii as considered in this section are often applied on active fibers,
which are wound up on water cooled mandrels, but they can be avoided in passive
beam delivery systems for material processing. If the bending radii are limited to
values above 0.2m, the reduction of the threshold of the nonlinear effects can be

neglected for the fibers considered so far.
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6.1.2 Investigation of the Mode Spacing

After the promising results of the detailed investigation of the low-NA LMA fibers,
a high-NA MM fiber (referred to as SIF50/480) with an even larger core of 50 pm in
diameter was examined. This fiber is commonly used for heam delivery in the field of
material processing in combination with high-brilliance MM lasers with M? ~ 6. Its
cladding diameter is 480 pm. The V-number of the fiber is V' = 32.9 at a wavelength
of 1050 nm resulting in more than 500 core-guided modes according to equation 2.42.
However, according to FEM simulations the difference between the effective index of
the LPy; and the LP;; mode is Anqg = 1.46693 — 1.46682 = 1.1 - 10~* which would
be sufficient for robust LPg;-mode propagation according to the criterion 6.2.

As for the low-NA LMA fibers, the experiments showed no decrease of the beam qual-
ity over several meters of propagation. The NF distribution was robust against fiber
bends, but the measured beam propagation factors were between M? = 1.3 — 1.5.
These higher values can be attributed to an excitation of more than just the funda-
mental mode when the beam was coupled to the fiber. Compared to the measure-
ments with the low-NA fibers with smaller cores the free space to fiber coupling is
even more critical because of the lower mode spacing and the high number of core
guided modes. But it is likely that this can be improved with better coupling optics
and improved alignment conditions in the future.

After these experimental investigations of fibers with core diameters up to 50 ym, the
limit for SM beam transport in MM step index fibers according to the condition (6.2)
was investigated with the help of simulations. By changing the core diameter and
using different NAs several step index fibers were simulated in order to calculate the
difference of the effective refractive indices of the corresponding fundamental modes
and the HOMs. The calculated modes have been sorted and numbered according
to their effective refractive indices for the representation of the Angg in figure 6.4.
The fundamental mode, as the mode with the highest refractive index, is denoted
by #1, the LPy; by #2, and so forth.

The resulting nonuniform staircase-like pattern shows that the index differences of
subsequent modes in step index fibers are irregular. The difference of the effective
refractive index between LPg;, LP;; and LPgy are higher than the average mode
spacing which is advantageous for the transport of laser beams containing only LP¢;
and/or LP1; modes.
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Figure 6.4: Difference of the effective refractive index Aneg between the calculated HOMs
and the fundamental mode of different step index fibers. In addition, the
simulation results for a LCF according to the parameters of [41] are indicated

by black pentagons.

& NA=0055 | * NA=0055 1
: @ -NA=D11 | 41 |-e- Na=D.11 4
4 ; A NA=022 e NARG 22 |
: = o]
q e H 3
£ 3
. < 2] e
5‘ 24 bad 2 .'.
: 8 &
2 &
14 ] . = 19 it
i CERERS il
o T T T T T T T T o L T T T T T T T T
0 20 30 40 50 60 70 80 0 10C 10 20 30 4 S 60 70 B 90 10C
Core Diameter (pm) Core Diameter (um)

Figure 6.5: Calculated mode spacing Figure 6.6: Calculated effective mode

Aneg of the LPg; and LPqq area Aqq depending on the
modes depending on the core diameter for three dif-
core diameter for three dif- ferent NAs.

ferent NAs.



142 CHAPTER 6. FUNDAMENTAL MODE TRANSPORT IN MULTIMODE FIBERS

If only the transport of the fundamental mode is desired, one can focus on the
mode spacing Aneg between the LPy; and the LP;; mode. Figure 6.5 shows this
mode spacing calculated for different core diameters of three fibers with numerical
apertures of NA = 0.55 (red rectangles), NA = 0.11 (green circles), and NA = 0.22
(blue triangles). At a core diameter of about 50 pm, a Aneg of 1-107% is reached
for all three fibers. Larger cores lead to mode spacings which are too low according
to condition (6.2). A higher NA results in a stronger confinement of the modes and
therefore slightly smaller effective mode areas (Aes) as shown in figure 6.6. As a
consequence, the An.g at a certain core diameter is larger for higher NA fibers as

can be seen in figure 6.5.

6.1.3 High-Power Test of a Low-NA SIF

Because of the high transmission efficiency and the high beam quality experimentally
achieved with the low-NA fiber with a core diameter of 30 um presented in section 6.1
(LMA-GDF-30/400) a high-power beam delivery test was performed with a similar
fiber produced at the IFSW. To increase the available power for this experiments,
the fiber laser oscillator of the setup described in chapter 5.1.2.3 was improved by
two amplifier stages. A passive step index fiber and a tapered fiber region were
drawn from the same preform (supplied by CeramOptec GmbH) at the IFSW |64].
The approximately 500 mm long tapered fiber region was used to match the core
diameter of the laser system with 20 um to the core diameter of the passive transport
fiber with 30 pm. The passive fiber had a cladding-to-core diameter ratio of 20 and
a numerical aperture of 0.056. A M? value of 1.35 was measured after the beam
delivery fiber of 100 m length at a transmitted power of 800 W [65].

The onset of Stimulated Raman Scattering (see chapter 2.2.3.3) was observed at
output powers above 780 W indicated by a the spectral line at a Stokes-shifted
(2.56) wavelength of 1140 nm as shown in figure 6.7. By comparing the measured
M? value of only the laser source with the M? value obtained after the whole system,
it can be concluded, that the passive transport fiber including splices and the tapered
region deteriorated the M? value by less than 0.1. Further cutback measurements
showed that less than 5% of the power is lost within the 100 m of transport fiber

demonstrating the high efficiency of this beam delivery system.
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Figure 6.7: Spectral intensities after a passive beam delivery fiber (r.,, = 15pm, NA=

0.056) of 100m length. At high output powers the onset of SRS, indicated

by an small peak at 1140 nm, is observed.
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6.2 Fundamental Mode Transport in a Multimode
Multicore Fiber

LCF and photonic bandgap fibers are used because of their (asymptotic) SM be-
havior and it would not make much sense to consider such fibers in a MM regime.
Multicore fibers on the other hand can efficiently be made MM because the light is
guided by TIR. Therefore, it was investigated if MM multicore fibers can be used
for SM beam delivery and how they perform in comparison to step index fibers.

A multicore fiber consisting of 7 Ge-doped cores with a diameter of 7pm and a
center-to-center distance of A = 9 pm was manufactured by the IPHT in Jena. The
7 cores are surrounded by pure silica glass, resulting in a numerical aperture of
NA = 0.085 for each core. A picture of the fiber end face is shown as an inset in
figure 6.9. The fiber guides a set of 14 supermodes (including polarization degen-
eracy). The approach was to excite the fundamental LPg;-like in-phase supermode
and to investigate the mode mixing during the propagation in order to learn if such
a structure can be used for high-brilliance SM beam transport.

First, the mode structure of this fiber was investigated theoretically. The mode with
the highest effective refractive index is the in-phase supermode with 2 degenerate
linear polarization states and a bell-shaped intensity distribution as shown in figure
6.8. The next type of modes are ring-shaped with axially symmetric (azimuthal,
radial) and hybrid polarization followed by 4 ring-shaped modes of more complex
polarization states. The 11th and 12th mode are linearly polarized modes with a 7
phase shift between the center core and the 6 surrounding cores (LPgs-like). Due to
the 6-fold rotational symmetry of the fiber structure, LPy,-like modes with 4-fold
symmetry do not appear and the highest guided modes are LP3;-like modes.
Experimentally, the coupling of a free space Gaussian beam was optimized to couple
preferably into the fundamental in-phase supermode with an effective mode area of
346 1m? at a wavelength of 1.05m. The theoretical overlap of this mode with a
Gaussian distribution was calculated to be 92.55%. Even under perfect conditions
1-0.9255% = 14.35% of the power is not coupled to the fundamental supermode and
possibly coupled to HOMs. Therefore, it was first investigated how to achieve the
best possible beam quality. Different collimation and coupling optics were used to
optimize the coupling into the in-phase supermode. The emission of the ASE source

was coupled to the fiber with an efficiency of 85% with the help of a collimation
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Figure 6.8: Simulated optical intensity of the supermodes of a 7-core fiber. The numbers

indicate the polarization degeneracy.

package with f = 8 mm and a focusing lens with f = 30mm. The measured shape
of the NF intensity distribution shown in figure 6.9 is close to one of the simulated

in-phase supermode shown in figure 6.8.

Figure 6.9: Measured NF intensity of the 7-core fiber. An image of the fiber end face is

shown as an inset.

But the intensity in the 6 cores surrounding the central one is not distributed in a
completely uniform way. However, the intensity in the central core is considerably

higher then the intensity in the 6 surrounding cores as expected for the in-phase
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supermode. The intensity distributions (black lines) along the two principal axes
(green dotted lines) are superimposed with Gaussian fits (red dotted lines). Due to
the segmentation of the core region and the comparably high NA of the individual
cores the NF pattern considerably deviates form a Gaussian distribution.

The intensity in the different cores can be changed by changing the coupling condi-
tions. For instance, it was possible to achieve a mode composition which results in a
nearly equal intensity distribution over all 7 cores (see figure 6.11) simply by chang-
ing the position of the fiber end with respect to the focal point of the focusing lens
(z-axis). Several measurements of the beam caustic were performed under different
coupling conditions. If the transmitted power was maximized, beam propagation
factors between M? = 1.2 and 1.4 were extracted from these experiments.

Figure 6.10 shows that the obtained M?2-values along the two main axes are differ-
ent form each other as can be expected from the NF distribution. One of the axes
intersects 3 cores, whereas the other intersects only the central core. As can be seen,
the measured A 2-values were virtually independent of fiber bends which shows that
bend-induced mode mixing in this fiber is negligible.

To obtain a theoretical M2-value the FF distribution was calculated from the NF
distribution obtained by the simulation with the help of the Kirchhoff integral (2.85).
The diameters of these near- and far-field distributions were determined according
to the 2nd moments method (2.84) from which a value for the M? of the in-phase su-
permode was calculated according to equation 2.83. As explained in chapter 5.1.2.1
the calculation is done for a finite domain. If the calculated region of the FF is cho-
sen in a way that more than 99% of the power within the NF is captured within the
calculated FF (less than 1% of the power is cut by the area used for the calculation
of the FF) the theoretical M?-values obtained along the main axes are 1.36 and 1.29.
Comparing these values to the measured ones shows that the measured M2-values
are lower than the theoretical values. This is probably because the diffraction pat-
tern of the measured FF was cut by the measurement setup (propably by the 1"
optics/holders) and more than 1% of power was lost in the experiment. A situation
similar to the one of the characterization of the 19-core fiber described in 5.1.2.1.
After the coupling conditions were optimized to maximize the intensity of the in-
phase supermode, the power losses due to fiber bends were investigated. Figure
6.12 shows the measured bending losses of the 7-core fiber (filled symbols). Bending

losses could not be observed for radii larger than 0.1 m.
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the bending radius R.

Strong bends down to R = 0.04m did result in bending losses, but they did not
have a noticeable effect on the beam quality. A degradation of the beam quality
during the propagation in fiber samples with lengths from 1 to 12m was also not
observed. Hence, the supermode is very well guided. The attenuation of the fiber

was estimated to be 5 dB/km using the cutback method described in chapter 4.2.4.
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Figure 6.12: Measured (filled symbols) and calculated (open circles) bending-induced

losses of the 7-core fiber.
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6.2.1 Comparison of a 25/280 Low-NA SIF to the 7-Core
Fiber

The characterization of the 7-core fiber revealed that the fundamental supermode
propagates with low losses, and the beam quality is stable even if the fiber is moved
or bent. These results are similar to those obtained for the SM transport in MM step
index fibers. To investigate if there is a conceptional advantage of one of the fiber
species in this context, appropriate fibers have to be found to make a meaningful
comparison.

In case of the step index fibers a slightly smaller version of the 30/400 low-NA fiber
(described in 6.1) with 25 um core diameter is chosen because this fiber denoted as
LMA-25/280 exhibits the same number of core-guided modes as the 7-core fiber.
Furthermore, the mode field area of the fundamental (super)mode is the same for
both fibers. Hence, the two fibers are ideally suited for a comparison.

The coupling of the free space beam into the fibers is again optimized to excite mainly
the fundamental mode. Since their mode field areas are equal, the same coupling
optics were used for both fibers. Using the ASE source, the beam propagation
factors M? and the bending losses of both fibers were measured within the same
measurement run. The obtained M? values were about 1.3 for both fibers.

The results of the measurements of the bending losses are compared in figure 6.13.
The bending losses of both fibers are negligible for radii larger than R = 0.1 m. For
radii below R = 0.1 m, their bending loss characteristics are very similar. Only for
the lowest measured bending radii at R = 0.03m the values differ considerably, but
because of the stiffness of the fibers it was difficult to measure very sharp bends and
the reproducibility of this measurement point was lower. Therefore, the results at
R = 0.03m have a higher uncertainty. Except for these values the bending losses
of the 7-core fiber (blue pentagons) are similar to the losses of the LMA-25/280
(orange circles).

From the mode field areas, the M? values, and the bending losses it can be concluded
that both fibers behave alike. In particular, an advantage of the multicore concept for
the transport of SM beams with MM fibers was not observed. The theoretical overlap
between the in-phase supermode of the 7-core fiber with a Gaussian distribution is
about 92.55% and therefore lower as the overlap of a Gaussian distribution with the

fundamental mode of the step index fiber which can be close to 100%.
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In addition, the 7-core fiber is more difficult to produce and will in general have a
higher attenuation due to the higher amount of interfaces. Hence, the step index
fiber would be preferred as a delivery fiber for a Gaussian beam.

However, the measurements showed that both concepts can be used for an efficient

transport of SM beams as long as the mode spacing (6.1) is high enough.
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Figure 6.13: Comparison of the bending sensitivity of the 7-core fiber and a low-NA step
index fiber (LMA-25/280). The fundamental modes of both fibers have the

same mode field areas.
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Chapter 7

Cylindrical Vector Modes in Fibers

Up to now, mainly the properties of the bell-shaped fundamental mode in (asymp-
totically) SM fibers and MM fibers were investigated. Only a few remarks on the
polarization were made because the fibers discussed so far did not maintain the
polarization of the light. Within this chapter cylindrical vector modes which are
modes with spatially varying polarization and cylindrically symmetric intensity dis-
tribution are considered. The possible benefits of radially (TMgx) and azimuthally
(TEox) polarized modes are explained and the first experiments with such modes
and step index fibers are reported.

Due to the limited time, this topic could not be investigated in full detail but it is
described under which circumstances radial or azimuthal polarization states can be
preserved during propagation in passive fibers and specialty fiber designs to trans-
port such modes are proposed which could be the basis for further investigations in
this field.

7.1 Advantages of Radially and Azimuthally Polar-
ized Modes

In some applications it is advantageous to use HOMs with a ring-shaped inten-
sity distribution and special polarization properties. Radial (TMp;) and azimuthal
(TEo;) polarization states are interesting because the absorption coefficient depends
on the polarization. Hence, metal processing can greatly benefit from such polar-
ization states |14].

In particular, the lowest-order radial and azimuthal polarization states TMg; and
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TEy; are promising because of their high focusability (low M? of about 2). These
modes are not only investigated for their special polarization characteristics, their
intensity distribution is of interest as well as described in the following. Figure 7.1
shows the intensity profile of a Gaussian beam in comparison with a ring shaped
intensity distribution of an axially symmetric polarized beam (in this case cylin-
drically but azimuthally or radially could be used as well). According to second
moments method (2.84) both have a beam diameter of 200 pm. As can be seen, the
gradient of the intensity is steeper for the ring-shaped intensity distribution. Since a
certain threshold intensity is needed to melt the processed material the ring-shaped
intensity distribution is advantageous because less material which is not molten will
be heated unnecessarily by the laser.

The calculated angle-dependent Fresnel absorption on a hot iron plate is shown in
figure 7.2. The absorptivity strongly depends on the polarization for high angles of
incidence (close to the normal incidence).

Weber et al. [15] demonstrated an increase of the cutting efficiency of up to 36 %
and an increase of the maximum cutting speed of 37.5 % when processing stainless
steel with a thickness of 2mm with a radially polarized C'O laser. Furthermore,
they observed a reduced spatter hehavior for deep welds and an significant influence
on the drilling efficiency using a solid-state laser with 1 pm wavelength and a radially

polarized beam.
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To investigate the behavior of radially or azimuthally polarized modes in optical
fibers experimentally, a special laser source is needed but most (commercially) avail-
able laser sources are either SM with a close to diffraction-limited (Gaussian) beam
or MM with a flat-top beam profile. A linearly polarized beam can be transformed
using segmented \/2—wave plates [66] to obtain a beam that is mostly radially or
azimuthally polarized. However, such vector modes can be generated directly by us-
ing special intra-cavity polarization shaping elements which is especially interesting
for high-power lasers. Such elements were characterized, selected, and used to built
the first radially polarized thin-disk laser [67] to investigate the possibility of using
fibers for delivery of such modes as described in the following. Further informations
about the polarizing elements (grating mirrors) and the special thin-disk laser are

available in appendix 8.1.

7.2 Transport of a Radially Polarized Mode in a
Step Index Fiber

As demonstrated in chapter 6, the fundamental mode may be well preserved within
a MM fiber if the mode is properly launched and the difference of the effective refrac-
tive indices between the fundamental mode and the successive modes is sufficiently
high. But the polarization state is not preserved in standard fibers and the mea-
surements showed that the degree of polarization after the fiber strongly depends
on the movement and the bending of the fiber. A birefringence as caused by strain
is needed in order to make a fiber polarization maintaining.

A cylindrical strain distribution can be expected within cylindrically symmetric step
index fibers due to the core-cladding interface [68]. Such a strain distribution will
not lead to the preservation of linearly polarized light but it could maintain a mode
with cylindrically symmetric polarization. To address this thought, a radially po-
larized mode was carefully injected into a LMA fiber (Nufern 25/400) with a core
diameter of 25 pm and a NA of 0.07 and characterized with the NF-FF-measurement
setup. Figure 7.3 shows the measured near- and far-field distributions of the laser
beam after propagating for 10 m inside the fiber. Special care was taken to avoid
strong bends of the fiber. The ring-shaped distribution is still visible but the inten-
sity over the ring is not uniform. As for the NF, the intensity in the center of the

FF vanishes.
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Figure 7.3: Near- and far-field intensity distributions after a 10 m long fiber with 25 pm
core diameter and a NA of 0.07 if a radially polarized TMy; mode was coupled

to the fiber.

A polarizer was introduced into the setup to analyze the polarization. Figure 7.4
shows the resulting NF distributions for three different analyzer settings. From the
different intensities it can be concluded that the polarization is not purely radial.
A polarimeter (see false color plot) was used to further investigate the local po-
larization on the ring. The fiber has been moved between the measurement with
the analyzer in the NF-FF-measurement setup and the measurement with the po-
larimeter which influenced the polarization. The polarization ellipses show that the
polarization state is far from being pure. A radial tendency is visible at positions
where the intensity is high but in the lower intensity parts the local polarization is

rather azimuthal than radial.

Polarimeter

Figure 7.4: Distributions of the NF intensity at different analyzer settings are shown
together with a false color plot obtained with a polarimeter to measure the
local polarization. The measurements were performed after a step index fiber
of 10 m length (r¢, = 12.5um, NA = 0.07) to which a radially polarized mode

was coupled.
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The symmetric ring-shaped intensity distribution of the eigenmode of the straight
fiber is altered during propagation inside a fiber bend. The corresponding modes are
LPy;-like as described in chapter 3.2.2.2 and shown by the simulation results in figure
3.5. The experiments showed that the transport of a radially polarized TMg; mode
within the fiber results in a mixture of the four degenerated HEq; (2x), TEqr, TMp;
modes which leads to a deformation of the intensity distribution. This is different to
the case of a beam transport of a fundamental mode where the interaction of the two
degenerated orthogonally polarized Gaussian-like modes led only to depolarization
while the intensity distribution did not change. Here, the intensity distribution is

altered as well.

7.3 Specialty Fibers for Radially and Azimuthally
Polarized Light

In order to benefit from radially or azimuthally polarized laser beams on the work-
piece specialty fibers, which preserve such polarization states, are needed. The
degeneracy between the different polarization states has to be lifted by introducing
a radial-azimuthal birefringence. The symmetry of the fibers combined with differ-
ent materials used for the core and the cladding or a changing doping concentration
(especially in gradient index fibers) will introduce a birefringence in virtually ev-
ery fiber. However, as the previous results showed, this birefringence is not strong
enough to ensure the preservation of the polarization. As a result, one has to in-
crease the birefringence intentionally.

Within this work, special fiber structures with rad.-az. birefringence were developed
and simulated with the FEM software. The "Plain-Stress" module of COMSOL
Multiphysics was therefore combined with the "Hybrid-Mode Waves" module of the
RF (radio frequency) package. With the knowledge of the stress-optical coefficients,
the thermal expansion coefficients, and the Poisson’s ratio, the influence of a tem-
perature change on the stress distribution can be derived by applying the Young’s
modulus. For instance, if different materials are implemented in the fiber, such as
stress rods made of diboron trioxide B,Os, a stress distribution can be calculated
for a given temperature change. This distribution can then be used as input for the
eigenmode calculation.

The main problem of such an approach is that the stress distribution in real fibers
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is not a result of a temperature change from a temperature 7} to a temperature T,
but rather of the cooling of the liquid glass during the fiber drawing process. The
liquid glass becomes solid, and a stress distribution is "frozen" inside the fiber. This
stress distribution depends on the different material parameters, such as the soft-
ening and melting temperatures, the temperature distribution inside the glass, and
basically all parameters of the drawing process. To make quantitative predictions,
the materials and the drawing process would have to be examined in detail which
is outside the scope of this work. In order to perform theoretical investigations of
different fiber structures, it was therefore decided to mimic the stress elements by
air holes with a certain pressure. It is well known that a pressure in the order of
1000 bar can be achieved in glass capillaries with micron sized holes without braking
them. With this model it is possible to calculate the stress distribution of different

configurations by introducing a reasonable amount of pressure.

b) annual core c)

stresselements

Figure 7.5: Calculated stress distribution (Tresca stress) of a Panda-type fiber a) and a
fiber with a ring-shaped core and a central stress element b). A scheme of

the structure with the central stress element is shown in c).

Figure 7.5 shows the calculated stress distribution of two kinds of fibers in false
color plots. The first distribution a) results of the calculations of a polarization
maintaining (PM) Panda-type fiber. Such fibers are commercially available to pre-
serve a linear polarization for SM (or few modes of low order) beam transport. The
simulation results for this type of fiber were in good agreement with the available
measurement data. The second structure b) exhibits a central stress element. The
high refractive index core is a ring around this element separated by a thin low-index
cladding. In both cases the stress elements are approximated within the simulation

by holes filled with air with a pressure of 1000 bar.
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As can be seen, a fairly homogeneous distribution over the area of the core can be
achieved in Panda-type fibers with large stress elements and a comparably small
core. Linearly polarized light properly injected to one of the main polarization axis
of the fiber maintains its state of polarization with different phase delays between

the slow and the fast axis. The phase delay A¢
Ap= (B, —fBh) - L=AB-L (7.1)

is proportional to the length of propagation L and the difference of the propagation
constants of the two orthogonally polarized modes (8, 3,).
The phase relation is restored after integer multiples of a certain distance called

polarization beat length L, \

Aneﬁ‘ '

With this relation the difference of the effective refractive indices can be obtained

L (7.2)

by measuring the beat length of the fiber. In commercially available polarization
maintaining (PM) fibers, the beat length is a few millimeters. For L, = 2mm and
A = 1pum, the effective index difference becomes Angg = 5-107* (e.g., Corning
PM980). This difference prevents polarization mixing between the slow and the fast
axes, so that the polarization is preserved if the light is properly launched.

The situation is equivalent to the mode mixing in MM fibers discussed in chapter 6.
A difference of the effective refractive indices between the modes in the order of 10~*
was sufficient to preserve the beam quality of the fundamental mode. It is straight
forward to postulate similar requirements for the cases of azimuthally or radially
PM fibers. However, this situation is more complex. To propagate such modes the
fiber has to be multimode because in any realistic case the fundamental fiber mode
is linearly polarized (even when the fiber core has the shape of a ring).

To maintain the TEgy; or the TMy; mode, the mode mixing with the fundamental
mode HE;; and the HOMs has to be avoided. Furthermore, crosstalk between the
polarization states has to be prevented. Unlike in the case of linear polarization there
are not two but four possible polarization states: azimuthal (TEo;), radial (TMg;)
and two modes with hybrid polarization (HE; ). Without rad.-az. birefringence the
four polarization states are (near-) degenerated. The tiny difference of neg, resulting
from the reflection differences at the core-cladding-interface of different polarization
states, is usually negligible. However, in presence of rad.-az. birefringence the

(near-) degeneracy is broken and the effective refractive indices of the two modes
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with hybrid polarization are usually in between the n.s of the radially and the
azimuthally polarized modes. Therefore, the constraints for the robust transport of

a TEg; mode in an optical fiber can be summarized as:
o neg(HE 1) — neg(TEg1) > Anp, (Condition 1)
o |neg(TEq) — neg(H Ea1)| > Anpin (Condition 2)
e |neg(TEo1) — e (HOMs)| > Anyi, (Condition 3)

with Any, ~ 1.0-107%. By changing the arguments from TEg; to TMg; one obtains

the conditions for the transport of the lowest-order radially polarized mode.

7.3.1 Using a Central Stress Rod

The simplest way to introduce a rad.-az. birefringence is shown in figure 7.5¢).
Only one stress rod is used in the center of the fiber surrounded by a high-index
core which can be separated from the stress rod by a thin low-index cladding to
avoid losses introduced by the higher absorption of the stress rod. The ring-shaped
core is enclosed by low-index cladding to confine the light and to give mechanical
strength to the fiber.

A series of simulations were performed with different sizes of the stress rod (emu-
lated by an air hole with 1000 bar pressure) and different thicknesses of the core.
The simulations showed that in this kind of fiber the fundamental mode is a linearly
polarized ring-shaped mode. While it is straight-forward to reach to the first two
conditions mentioned above by limiting the core area, it is rather difficult to fulfill
the third condition. The reason is that, unlike in the Panda-type case, the stress
profile is strongly inhomogeneous over the core area. The strength of the birefrin-
gence is rapidly decreasing with the distance from the stress element. The presence
of the hybrids modes (HEy;) leads to additional complications because of their lower
sensitivity to the rad-az birefringence.

Therefore, the ring-shaped core has to be close to the stress rod, the inner cladding
has to be thin, and a large NA is required to separate the light from the stress
element. In further simulations the thickness of the layer separating the core from

the stress rod (rime" — ) was fixed to 1pm and the NA to 0.22 while the radius

co

outer
co

of the stress rod 7, and the thickness of the core region (r2“*") were changed.
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The simulations showed that if the core region is made thin but with a high diam-
eter to maximize both, the core area and the effective rad.-az. birefringence, the
third condition is still problematic. Thin ring-shaped cores lead to a high number
of modes with simple ring-shaped intensity distributions but complex polarization
configurations. The difference of the effective mode indices of the TEy or TMy; to
those of these HOMs is therefore critical. According to the simulations the appli-
cation of this kind of structure is limited to mode field areas below 150 pm? due to
condition 3.

Using a ring-shaped stress element around a circular core (opposite configuration)
does not lead to a rad.-az. birefringence inside the core because all forces cancel
each other. As a result, there seems to be no configuration (with several stress rods,
or combinations of stress rings and stress rods) which leads to a more homogeneous

az.-rad.-stress distribution over the core region.

7.3.2 Using a Special Doping Variation in the Core

Another approach for the introduction of a rad.-az. birefringence without the use of
stress elements could be the change of the doping concentration over the core area.
In gradient index fibers the doping concentration changes gradually and causes rad.-
az. birefringence. Because of the symmetry of the problem the rad.-az. birefringence
has to vanish in the center of the fiber. The maximum birefringence appears at the
core-cladding interface, and in parabolic profile fibers the birefringence increases
parabolically from the center to this interface [68]. The fiber production process is
usually optimized to minimize this birefringence.

In case of step index fibers, the rad.-az. birefringence introduced by the core-cladding
interface decays rapidly with increasing distance to this interface. However, one
could try to maximize the birefringence by using different dopants in a way that the
resulting refractive index distribution is still flat (n.,(r) = n.) but the gradient of
the birefringence (decrease from the core-cladding interface to center of the core) is
reduced; thereby enhancing the influence of the birefringence on the mode structure.
In this case the birefringence is related to the nanoscale doping concentrations. Light
with a wavelength of about 1pm, propagating inside the fiber core, will experience
a smooth variation. Therefore, the birefringence can be implemented directly in the

permittivity tensor e.
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In a cylindrical coordinate system the permittivity including a rad.-az. birefringence

can be written as a diagonal tensor

€rad 0 0
= 0 e 0 |. (7.3)
0 0 e,

This tensor has to be transformed to the Cartesian system of the FEM-simulation
by
¢=ReVRT (7.4)

With the transformation matrix & shown in 3.19 the permittivity in the Cartesian

basis can be written as

c08(0)2€rqa + sin(¢)%€,.  sin(e) cos(¢)(€raa — €az) 0
&= | sin(¢) cos(¢)(€rad — €az)  SIN()%€raq + cO8(P)%caz 0
0 0 €,

This expression was implemented in the geometrical subdomains of the fiber in the
FEM-simulation. With this approach, step index and parabolic profile fibers were
investigated theoretically. In both cases a birefringence increasing parabolically from
zero in the center to a fixed maximum of = 5-10~* (which is close to the to point
when the fiber would become fragile) at the core-cladding interface was assumed.

A suitable expression for €, is therefore

€rad(Feore) = (Meore + —21— - 12) - /(L + 2r - c03(9) /R) (7.5)

core

where 7 and ¢ are the polar coordinates and 7 (= 5-1074) is the maximum birefrin-
gence at the core-cladding interface.

It was not investigated how such a birefringence could be achieved experimentally.
The goal was to investigate if such an approach could work in principle by assuming
an idealized fiber with a reasonable amount of rad.-az. birefringence.

The results of the simulations showed that with these special conditions it is pos-
sible to achieve radially PM fibers with core diameters up to 30pum at a fixed
NA of 0.22. The calculated effective index differences between the ring-modes are
et (HE21) — 1ot (TMgy) = 1.0 - 107 and neg(TEo;) — ner(TMgy) = 1.8 - 107% at a
core diameter of 30pum. The index differences between these modes and the fun-

damental mode are considerably higher (> 2.0 - 1071) in this case. The same is
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true for the index differences to the subsequent HOMs. The effective mode area
for the TMg;-mode is about 500 1m? which would be sufficient for the delivery of a
radially polarized continuous-wave beam with a power of 1 kW. Figure 7.6 shows the
calculated intensity distributions of the TEq; and the TMy; mode. If the rad.-az.
birefringence is included into the simulations, the bent fiber exhibits radially and az-
imuthally polarized eigenmodes. Their intensity distribution gets slightly deformed
by the bend but the distribution is still ring-shaped and their polarization is main-
tained. Without birefringence the corresponding eigenmodes of the bent fiber are
linearly polarized LP;; modes. TEqy and TMy; modes are not present. Therefore,
a properly injected TEqy; or TMy; mode can only be preserved in a flexible fiber if a
sufficient rad.-az. birefringence is present.

But there is another possibility to separate TEy and TMy; modes without the need

for strain or birefringent optical media which is explained in the following.
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degenerate

degenerate

Figure 7.6: Calculated intensity distributions of the TMy; and TEg; modes and their
modifications if the fiber is bent with a radius R. In presence of radial-
azimuthal birefringence (here max. 5-107* at the core-cladding interface)

the modes are maintained which is not the case without birefringence.

7.3.3 Using High Refractive Index Steps

A third approach to maintain radially and azimuthally polarized modes in flexible
fibers is based on geometrical considerations and the fact that the Fresnell equations
[17] are polarization dependent which leads to different effective mode indices for the
TE¢; and the TMy; mode. This effect can usually be neglected (see weakly guiding

approximation (2.40)) in step index fibers because the difference is very small.
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However, if the refractive index difference between core and cladding becomes larger,
this effect may be important. Since the goal is to propagate a ring-shaped mode, a
ring-shaped core can be used. It has the advantage of an inner and an other interface
which provides the possibility to maximize the polarization dependence.

This intuitive method proves correct by a more theoretical approach given by Ra-
machandran et al. [69]. If the modes are calculated analytically with the help of

the weakly guiding approximation (2.40), vector corrections |18|

6ﬂTE01 =0, (7.6)
6ﬁTMm = 72(61 + (52) s (77)
0fHEy = 02+ 01, (7.8)
with
AV L OE(r) O(An(r)/Anma)
= g [ e S50 SEE
_ Afmax [y HARE)/ Al
0 = 32 3 /E (r) 5 dr (7.10)

can be used to account for the polarization error. Here E(r) is the electric field of
the scalar mode, An(r) is the refractive index profile relative to an infinite cladding,
and Anp,y is the maximum value of this function, typically the index of the core
[18]. As shown by the different expressions, high values of d; and dy lead to larger
polarization corrections to the propagation constant 5 and therefore to a larger
separation of the different polarization states. Hence, a fiber which guides high
fields (E(r)) and high field gradients (6E(r)/dr) at index steps will have a high
separation of the effective mode indices of the TEq;, TMg; the HE9; modes. This
implies that a waveguide which resembles the mode itself, here an annular core, is
more suitable for maximizing the Aneg [69].

Simulations of fibers consisting of a central air hole (without pressure) surrounded
by a high-index ring as a fiber core and a (low-index) pure silica cladding were
performed. A fiber with a relatively small NA of 0.06 between the core and the
other cladding resulted in the largest mode field area while closely matching the
three conditions postulated for radially and azimuthally PM fibers.

Figure 7.7 shows the refractive index profile of this fiber. The resulting mode field
area of the TEy mode is about 280pm? at 1pm wavelength. Simulations with

higher NA or even two glass-air interfaces (i.e. with only an annular core) resulted
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Figure 7.7: Refractive index profile of a fiber with central bore and a ring-shaped high-

index region for TEy; mode preservation.

in lower areas. But the time for this kind of simulations was limited and further
simulations might lead to optimized structures with even higher mode field areas.

In summary, three different fiber concepts for radial and azimuthal polarization
maintaining fibers were proposed. By parametric simulations a maximum mode
field area of almost 150 pm? was obtained by a fiber with annular core and a central
stress rod. A mode field area of about 500 pm? was achieved by the nanoscopic
approach which assumed an ideal doping variation in the fiber core resulting in a flat
refractive index distribution with a parabollically increasing rad.-az. birefringence.
The third, geometrical approach, which used the dependence of the reflection on
the polarization, led to a mode field area of about about 280 pm?. All these values
are considerably higher than the published result of [69] who demonstrated rad./az.

polarization maintaining beam delivery experimentally.



Chapter 8
Summary

Various simulations and experiments were performed in order to reduce the nonlin-
earities in passive optical fibers for flexible laser beam delivery as well as in fiber
lasers and amplifiers. Different fiber concepts were examined in view of large mode
field areas for high brightness laser beams. The goal was to preserve an excellent
beam quality and achieve a low bending sensitivity.

For theoretical investigations and for the design of suitable fiber structures, sophis-
ticated methods were applied in order to use commercially available FEM software.
By considering eigenmodes in fibers with piecewise constant curvature, the simu-
lated models were reduced to two spatial dimensions reducing the numerical effort
and making FEM simulations with sub-wavelength mesh elements possible. By in-
troducing an artificial perfectly matched layer, the power losses of specialty fibers
could be accurately calculated. Bending losses were simulated with the help of an
equivalent refractive index model, and coordinate transformations were used to ben-
efit from the symmetry of the fibers.

Specialty fibers produced at the IFSW as well as specialty fibers from commercial
fiber suppliers were made to meet the custom specifications resulting from the op-
timization of the fiber parameters. Experiments to characterize the bending losses,
the attenuation, and the beam quality of these fibers were performed. In order to
improve the repeatability of the experiments, the coupling of a free space laser beam
into the fiber was optimized by using automated computer-controlled high precision
axes.

With the help of these measurements, it was demonstrated for the first time that

several individual single-mode cores can be combined to a passive large mode area
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fiber offering an excellent single-mode beam quality. Measurements of a multicore
fiber (MCF) with 19 cores exhibited an A — 465m? and an beam propagation
factor M? of about 1.03. This extremely low M? value could be explained by a
small loss of power in the far-field which was cut by the used optics. Theoretical
investigations showed that a far-field area containing 99.6% of the power of the cor-
responding near-field area results in a theoretical M? value which is consistent with
the experimental value of 1.03.

The bending sensitivity of the 19-core fiber was close to the limit required for practi-
cal applications which required a careful handling of the fiber to avoid sharp bends.
However, by restricting the bending radii and with the help of a tapered bridge fiber,
a high-power test with 356 W (limited by the available laser source) was success-
fully conducted showing the high-power capabilities of this fiber. The rather strong
bending sensitivity shows an analogy to step index fibers with a very low numerical
aperture. Further investigations of a few-mode 7-core fiber and a step index fiber
with an equivalent mode structure showed that such multicore and step index fibers
behave in a similar way.

In conclusion, it can be stated that multicore fibers do not generally offer fundamen-
tal advantages over their step index counterparts. However, the multicore approach
facilitates the manufacturing of large mode area single-mode fibers which are not
reliably achievable with the state-of-the-art step index fibers. The segmentation of
the core led to several cores with higher NA, which are easier to produce and less
sensitive to fluctuations of the refractive index.

Furthermore, photonic bandgap fibers were investigated. The concept of asymptot-
ically single-mode guiding was used to design and optimize large mode area Bragg
fibers (BF). Simulations were successfully implemented and theoretical consider-
ations led to an iterative optimization algorithm and an improved understanding
of the influence of the cladding layers thicknesses on the optical properties of the
fiber structure. However, the experimental results revealed some challenges. The
produced BFs showed a decreasing beam quality with increasing fiber length in con-
trast to the expected asymptotic behavior. Power was constantly converted to lossy
higher-order modes. Therefore, the overall transmission efficiency became low. This
fact was attributed to a fluctuation of the refractive index in the center of the core.
However, for short fibers (about 1-3 m) an extremely robust fundamental mode beam

transport could be achieved. The optimized BFs were virtually free of bending losses
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and showed a lower bend-induced mode field deformation when compared to step
index fibers.

Another type of fiber which uses loss management, the leakage channel fiber (LCF)
concept, was also examined. At first, a simple structure with 5 holes as cladding was
designed. The fiber was produced at the IFSW and measurements revealed an effec-
tive mode area of Aoz = 383 11m? and a beam propagation factor of M? = ]L13 =1.1.
Due to production issues, the obtained attenuation of 22 dB/km was about 10 times
higher than expected, but the attenuation of such LCFs was decreased with an
improved production process. Further investigations showed the influence of addi-
tional cladding layers on the performance of LCFs. If the design is limited due to
the bending sensitivity, increasing the number of layers is not sufficient to substan-
tially reduce the losses for bends below a critical radius. However, by varying the
hole sizes, from smaller holes in the inner microstructured layer to larger holes in a
second layer, advantages in terms of bending sensitivity and differential losses could
be achieved, leading to the possibility to further increase the effective mode area.
Additionally, the use of cladding resonances was investigated. By carefully design-
ing the fiber diameter, the subsequent higher-order modes to the fundamental mode
could be resonantly coupled to cladding modes. This approach, combined with a
double layer microstructure with different hole sizes, led to a fiber design with 18
holes and a fundamental mode effective area of 708 pm?2. The produced fiber had
a smaller core resulting in a smaller mode field area. A high beam quality with a
beam propagation factor of M? = 1.1 was measured after the produced fiber and
the attenuation determined by a cutback measurement was only 6 dB/km.

Since present high-power fiber amplifiers usually show a minor LP;; mode content,
resulting in a beam propagation factor of about M? ~ 1.2, a LCF which efficiently
guides the LPy; and the LP;; modes was designed to transport the whole power.
The resulting fiber with a simple 6-hole cladding (LCF6) possesses a fundamental
mode with a mode field area of Az = 1187 pym?. The beam propagation factor after
the fiber was measured to be M? = 1.48.

Besides the comprehensive studies of (asymptotically) single-mode fibers, the possi-
bility of the transport of a fundamental mode beam in multimode fibers was inves-
tigated. Based on the assumption that a large effective refractive index difference
Aneg in the order of 10~* would prevent mode coupling, and therefore allow funda-

mental mode beam transport, several step index fibers and a 7-core multicore fiber
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were tested. In particular, a fiber with a core diameter of 30 pm and a NA of 0.06
(LMA-GDF-30/400) was intensively studied. When a Gaussian beam was carefully
injected with suitable coupling optics, a high beam quality could be maintained. A
beam propagation factor M? ~ 1.12 was obtained after 10m of fiber even when the
fiber was strongly bent or moved. Cutback measurements showed that the beam
propagation factor did not change noticeably with the fiber length.

The NA of the fiber turned out to be high enough to prevent noticeable bending
losses for bends with R > 0.1 m, but a bend-induced mode field reduction and de-
formation could be simulated and even measured by means of a fiber holder which
was especially customized for this purpose. A similar fiber with a slightly lower NA
of 0.056 was used for a high-power beam delivery test. A power of 800 W could be
delivered over a 100 m long fiber. A M? of 1.35 was measured at this output power.
Further calculations indicated that even a 50 pm core diameter would lead to a suf-
ficient mode spacing for robust fundamental mode beam transport. Therefore, a
fiber with 50 pm core diameter, and an ever higher NA| resulting in a V-parameter
of 32.9 (at 1050 nm) which indicates 541 core-guided modes, was tested. As for the
other large mode area fibers, the experiments showed no decrease in beam quality
over several meters of fiber. The beam leaving the fiber was robust against fiber
bends, but the measured beam propagation factors were between M? = 1.3 — 1.5.
This was attributed to a more difficult excitation of only the fundamental mode
and in consequence a higher-order mode content. This problem can be overcome by
improving the coupling of the free space beam to the fiber.

Furthermore, the radially and azimuthally polarized modes were investigated. It
turned out that neither the polarization nor the intensity distribution of axially
symmetric vector beams is maintained in passive multimode step index fibers. In-
troducing a radial-azimuthal birefringence is obviously necessary for the preserva-
tion of such modes. In accordance with the case of fundamental mode beam delivery
with multimode fibers, requirements for the use of radially and azimuthally polarized
modes were proposed and the simulations were extended to calculate a stress-induced
birefringence.

Three different fiber concepts for maintaining radially and azimuthally polarized
modes were suggested. By parametric simulations a maximum mode field area of
almost 150 1m? was obtained by a fiber with annular core and a central stress rod.

A mode field area of about 500 pm? was achieved by a nanoscopic approach which
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assumed an ideal doping variation in the fiber core resulting in a flat refractive in-
dex distribution with a parabolically increasing radial-azimuthal birefringence. The
third approach used the dependence of the reflection on the polarization and led to
a mode field area of about about 280 um?. These mode field areas are considerably
higher than the values reported for radially and azimuthally polarization maintain-

ing fibers in literature so far.

8.1 Outlook

It was demonstrated that the proposed high quality step index fibers, with a low
attenuation and a high homogeneity over the whole fiber length, enable fundamental
mode beam delivery in multimode fibers if the effective refractive index difference
between the fundamental mode and higher-order modes is sufficiently high. There-
fore, for lasers available now and in the near future, step index fibers are suitable for
most applications. However, the core size can only be increased to a certain limit
because the mode spacing is reduced with increasing core size. Consequently, the
output power of single-mode lasers may increase to levels which cannot be managed
by step index fibers.

The author believes that specialty fibers like MCFs and BFs will not play a major
role in the context of beam delivery for material processing. But such fibers have
their advantages as well. For special applications, where the stability of the beam
quality is critical, but not the bending sensitivity, such as rod-type fiber lasers,
optical sensing devices, or direct laser drilling, MCFs could be used because they
offer the possibility to produce large mode area single-mode fibers. Or they could
be used inside a laser cavity as mode filters. An active step index multimode fiber
and a mode-matched piece of single-mode multicore fiber between two fiber Bragg
gratings may be used to achieve a fully monolithic high-power fiber laser system
with excellent beam quality. Bragg fibers on the other hand offer the possibility
of an extremely low sensitivity to fiber bends and will have their special tasks as
well. Special Bragg fibers for CO, lasers are already used for surgical applications.
Applying the Bragg fibers discussed within this work to solid-state lasers with a
wavelength of about 1pm, these could be used for endoscopic or dental surgery as

well.



170 CHAPTER 8. SUMMARY

The leakage channel fiber concept seems to be most promising because of its sim-
plicity and its potential to couple core modes resonantly to cladding modes. The
possibility to use loss management to prevent the coupling between core-guided
modes is a further advantage of such fibers which is not yet well-known or used.
Such structures may be used for active fibers with very high mode field areas as
well, possibly combined with passive beam delivery LCFs, which will offer an alter-
native to present step index fibers.

After the improvement of the output power and the beam quality of industrial lasers
in the past years, the creation of special modes is an active field of research today.
The preliminary investigations of fibers for radially and azimuthally polarized modes

are expected to be the subject of further investigations at the IFSW.



Appendix

A.1 Intra-Cavity Generation of Radial and Azimuthal

Vector Beams

To directly generate axially symmetric vector beams, a laser resonator has to be
optimized to the ring-shaped mode and it has to be polarization selective to favor
either the TEq, or the TMy; mode. Within this work, a special microstructured end
mirror was used to set up the first radial polarized thin disk laser. The polarizing
effect is based on an intra-cavity reflectivity difference between the two orthogonal
polarization states which is induced by a waveguide coupling mechanism between
the incident free space beam and one (or two neighboring) leaky waveguide mode(s)
in the multilayer mirror. In the case of axially symmetric polarization states, the
required local reflectivity difference for TE-polarized and TM-polarized incident ra-

diation is locally introduced by a circular grating.

A.1.1 Principles of the Polarizing Grating Mirrors

It is known that the coupling of free space radiation to waveguide modes caused
by a grating is polarization selective since the phase matching condition, also called
resonance condition [70], can only be satisfied for one polarization at a time and at
a given angle of incidence and wavelength. This coupling condition is expressed by
the following relation

A
Neg = Sin ¢ + mK (A1)

where ng is the effective refractive index of the coupled mode (same as in the case
for the guided modes of a fiber) which is depending on the polarization and the
opto-geometrical parameters of the waveguide, ¢ is the coupling angle of incidence,

m is the diffraction order, A is the wavelength of the incident beam, and A is the
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period of the sub-wavelength grating. The groove depth D of the grating does not
affect the coupling condition but the coupling strength and therefore the reflectivity
difference. Hence, using this mechanism to couple the incident free space beam to
leaky waveguide modes of the dielectric multilayer mirror can lead to the desired
polarization discrimination. In fact, this coupling is accompanied by a power leakage
through the + 1st diffraction order into the substrate as depicted in figure A.2.
Consequently, by a proper design of the geometrical parameters (layer thicknesses,
grating groove depth, and period) an intra-cavity reflectivity difference between the
two orthogonal polarization states can be achieved at the wavelength of the laser
|71, 67] to polarize it. In figure A.2 the TE polarization is filtered but the concept
can be applied to TM polarization as well. Using a fully dielectric structure has the

advantage that the element is suitable for high-power applications.

A.1.2 Characterization of the Polarizing Grating Mirrors

For the spectroscopic characterization of the fabricated structures, a reflectivity
measurement setup, shown in figure A.3, was built according to the DIN EN ISO
13697 with a slight modification for its use under normal incidence [72]. A tunable
laser diode (1000-1050 nm wave-length range) was used as a source. The collimated
laser beam is cleaned using a single-mode polarization maintaining fiber in combi-

nation with a polarizing beam splitter with an extinction ratio of >10.000:1. An
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optical chopper was used to modulate the laser signal. The modulation frequency f;
provides the reference signal for the first lock-in amplifier (SR830 Stanford Research
Systems). A 50/50 beam splitter redirects the beam which is alternately reflected
from the chopper mirror and the sample under test to the integrating sphere. The
frequency modulation f, of the chopper mirror provides the reference signal for the
second lock-in amplifier (SR830 Stanford Research Systems). This differential mea-
surement scheme, which uses a fast alternation between the reference signal reflected
from the chopper mirror and the "unknown" signal reflected by the sample, reduces
the sensitivity to intensity fluctuations of the laser beam. The detection of the signal
was accomplished using a large area Si-photodiode (Hamamatsu S2386-8K) coupled

to an integrating sphere.

Collimation Chopper
lens — mirror  Sample
I AN A U
Tunable laser V l' PN Beam
1000 - 1050 nm Polarizer @Y/ spjitter
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Lockin1 4 &1 . diode sphere
3
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Figure A.3: Spectroscopic characterization setup built according to DIN EN ISO 13697

with modifications for its use under normal incidence.

Typical measurement results of TE (corresponding to the azimuthal polarization
for the circular grating) and TM (corresponding to the radial polarization for the
circular grating) reflection coefficients are shown in figure A.4. As expected, a
decrease of the reflection coefficient for TE-polarization occurs around the central
wavelength of the Yh:YAG disk laser. At 1030 nm, the reflection coefficients for
the TE (azimuthal) and TM (radial) polarizations were measured to be 90 £ 0.2%
and 99.8 + 0.2% respectively. This is in good agreement with the modeling results
(shown in figure A.4) and demonstrates the high reliability of this polarizing scheme.
The slight deviation of the spectra can be attributed to the fabrication tolerances
of the grating and the multilayer parameters.

An optimized design of such gratings could be achieved by etching in the fused silica
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substrate rather than in the top layer. The geometry of the grating is then repeated

in each single layer of the dielectric multilayer coating of the mirror.
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Figure A.4: Measured and calculated reflection coefficients of a grating with a period of
930 nm and of a nominal groove depth of 15 nm combined with a standard

29 quarter-wave layer dielectric mirror.

The potential advantages of this solution over the previously described design with
the grating on top are the simple fabrication, especially in the case of SiO, substrate
(standard etching process), lower scattering losses, and significantly broader fabri-
cation tolerances. Figure A.5 shows that, with the new concept, even a reduction
of the groove depth by 50% still leads to a more than 4 times broader bandwidth
within the required reflectivity difference (i.e., & 2%) for usage in thin disk lasers. In
these examples, the calculated reflectivity for radial (TM) polarization of the lasing
is not affected hy the presence of the grating and still exceeds 99.9%. This broad
spectrum significantly improves the fabrication tolerances which were found to be
critical in the previous work with the old mirror design.

Figure A.6 shows a scanning electron microscope (SEM) image of the cross-section
of a linear multilayer polarizing grating mirror where the good and conformal repro-
duction of the grating can be seen. Taking advantage of the multiple corrugation
interfaces, caused by the grating etched into the mirror substrate, the coupling
efficiency is enhanced. Since the polarizing mechanism is based on this coupling
mechanism, power leakage into the substrate becomes more efficient. The ampli-

tude of the effect is significantly larger than in the case with the grating applied to
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the top layer only.

Since the polarizing mirrors are developed to be integrated in high-power laser sys-
tems where heating of the element is an issue, the spectral behavior of one fabricated
linear polarizing grating mirror was analyzed at high temperatures. A leaky mode
grating mirror (multiple-corrugated design) with a grating period of 930 nm and a
grating depth of about 25-30 nm was heated using a Peltier element at the back side
of the substrate.
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Figure A.5: Comparison of the calcu- Figure A.6: SEM micrography of a

lated reflection coefficients multilayer mirror with a
for a top-etched and a multiple-corrugated grat-
multiple-corrugated struc- ing.

tures with 50 nm and 25
nm grating depth respec-
tively.

Figure A.7 shows the obtained results at temperatures of 21 and 134°C (respectively
21 and 126°C) for TE polarization (respectively TM polarization). The position of
the dip indicating the polarizing effect is affected only slightly. A shift to longer
wavelengths of about 8 pm/K was observed, proving the high stability of the present
mirror design. Such a small shift can be explained by the compensation between
the thermal expansion coefficients and the temperature dependence of the refractive
indices of TasO5 and SiOy [73]. On the other hand, the reflection coefficient of
TM-polarization is not affected when increasing the temperature of the sample up
to 126°C. The functionality of the polarizing grating mirror element will not be

affected even at the high temperatures associated with high-power laser systems.
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Figure A.7: Temperature dependence of the spectral response of the multiple-corrugated
polarizing grating mirror. The inset shows the wavelength dip position de-

pending on the temperature.

A.1.3 Intra-Cavity Radial Polarized Thin Disk Lasers

After the confirmation of the properties of the polarizing grating mirrors such a de-
vice, consisting of a grating with A = 920 nm, a groove depth of 25 nm etched in the
fused silica substrate, and 29 alternating Ta;O05 /SiO, layers (multiple-corrugated
design) was introduced as the end-mirror of a V-shaped thin disk laser cavity (see
scheme in figure A.8) [67]. In addition to the element the 421 mm long resonator,
designed to operate in the TEMj; mode regime (corresponding to a TMy; mode in
the fiber), comprises a 150 pm Yb:YAG disk and a 3% transmission output coupler.
The radial polarization of the generated beam was confirmed by recording the in-
tensity distribution through a linear polarizer used at different orientations. 10 W
of radially polarized radiation was generated in a clean doughnut mode, as shown
by the intensity distribution of the beam without polarizer in figure A.10 and the
corresponding intensity distributions after the polarizer.

In comparison with the operation with an unstructured HR mirror, the output power
obtained in radial polarization was 10% — 15% lower. Taking into account the 3%
output coupling, this can be well explained by the reflectivity of the grating mirror
which was about half a percent lower than the reflectivity of the unstructured HR
mirror.

However, this was the first demonstration of a radially polarized Yb:YAG thin disk
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ized light.

laser. A lab picture of the device is shown in figure A.9. A new production method
using a "Scanning Beam Interference Lithography" (SBIL) system [74], which works
in polar coordinates, and the precise control of the complete process parameters
during the production of the structures improved the quality of the gratings and
allowed higher values of the reflection coefficients in comparison to the grating mirror
used in the first laser. A fiber-coupled pump diode with 525 W maximum power at
940 nm and a 3.6 mm pump spot diameter was used together with a 215pm thick
Yb:YAG thin-disk (the curvature of the disk was measured to be ~ 4m at room
temperature) and a plain output coupler with 4% transmission. The TEMg,-mode
operation with M? ~ 2 was obtained by matching the diameter of the desired mode
on the disk to the pump spot diameter, and by optimizing its length at full power
which resulted in a 1.35m long V-shaped resonator design.

A radially polarized doughnut-like mode (measured M? a2 2.3 at full pump power)
with up to 275 W power and an excellent optical-to-optical efficiency of 52.5% was
generated with the polarizing mirror. Figure A.11 shows the intensity distribution
of the beam and the degree of radial polarization measured by a 2D-polarimeter

|75], revealing a high purity of more than (98.5 £ 0.5)% of the radial polarization.
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Figure A.10: Measured intensity dis-

tribution of the 10W
radially polarized laser
beam with and without a
linear polarizer at differ-

ent orientations.

Figure A.11:

cross-section

Measured

of the

intensity and
polarization distribution
of a radially polarized
thin  disk

Pt = 275W [74].

laser with
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